Skip to main content

Design and Tuning of Improved Current Predictive Control for PMSM

  • Chapter
  • First Online:
Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough

Part of the book series: Studies in Computational Intelligence ((SCI,volume 956))

  • 745 Accesses

Abstract

This paper presents a design and tuning technique for a improved current predictive control based on hybrid controller for Permanent Magnet Synchronous Motor (PMSM) to overcome the problem of accuracy the PMSM is facing with, a ANFIS Controller is introduced in the Predictive Control. This novel control strategy gives the guaranteed dynamic performance with increased accuracy. The proposed method includes the Hybrid controller which comprises of ANFIS Controller in addition to the Fuzzy algorithm to get higher accuracy by eliminating the static error and simple disturbances. The main feature of this technique is to adjust the errors caused by the obsolete traditional predictive controller and PI controller, thereby enhancing the accuracy. The analysis is confirmed through comparison of various simulations using PI controller and Hybrid controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim, K.-H., Baik, I.-C., Moon, G.-W., Youn, M.-J. (eds.): A Current Control for a Permanent Magnet Synchronous Motor with a Simple Disturbance Estimation Scheme (September 1999)

    Google Scholar 

  2. Morel, F., Lin-shi, X.F., Retif, J.M., et al.: A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive. IEEE Trans. Industr. Electron. 56(7), 2715–2728 (2009)

    Google Scholar 

  3. Wang, Z., Yu, A., Li, X., Zhang, G., Xia, C.: A novel current predictive control based on fuzzy algorithm for PMSM. IEEE J. (2018). https://doi.org/10.1109/JESTPE.2019.2902634

  4. Wang, G., Yang, M., Niu, L., Gui, X., Xu, D.: Improved predictive current control with static current error elimination for permanent magnet synchronous machine. In: IECON 2014—40th Annual Conference of the IEEE In.ustrial Electronics Society, pp. 661–667, Dallas, TX (2014)

    Google Scholar 

  5. Tong, S., Sui, S., Li, Y.: Observed-based adaptive fuzzy tracking control for switched nonlinear systems with dead-zone. IEEE Trans. Cybern. 45(12), 2816–2826 (2015)

    Google Scholar 

  6. Mohamed, Y.A.R.I., El-Sadany, E.F.: A control scheme for PWM voltage-source distributed-generation inverters for fast load-voltage regulation and effective mitigation of unbalanced voltage disturbances. IEEE Trans. Industr. Electron. 55(5), 2072–2084 (2008)

    Google Scholar 

  7. Wang, H., Yang, M., Niu, L., Xu, D.: Improved deadbeat predictive current control strategy for permanent magnet motor drives. In: Proceedings of 6th IEEE Conference on Industrial Electronics and Applications, pp. 1260–1264 (2011)

    Google Scholar 

  8. Al-Aawar, N., Arkadan, A.R.A.: Optimal control strategy for hybrid electric vehicle powertrain. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), 362–370 (2015)

    Google Scholar 

  9. Zeng, Q., Chang, L.: An advanced SVPWM-based predictive current controller for three-phase inverters in distributed generation systems. IEEE Trans. Industr. Electron. 55(3), 1235–1246 (2008)

    Google Scholar 

  10. Lemmens, J., Vanassche, P., Driesen, J.: PMSM drive Current and voltage limiting as a constraint optimal control problem. IEEE J. Emerg. Sel. Top. Power Electron. 3(2), 326–338 (2015)

    Google Scholar 

  11. Li, N., Ming, Y., Dianguo, X.: An adaptive robust predictive current control for PMSM with online inductance identification. In: Proceedings of International Review of Electrical Engineering (IREE), vol. 7, no. 2, pp. 3845–3856 (2012)

    Google Scholar 

  12. Serrano-Iribarnegaray, L., Martinez-Roman, J.: A Unified approach to the very fast torque control methods for DC and AC machines. IEEE Trans. Industr. Electron. 54(4), 2047–2056 (2007)

    Google Scholar 

  13. Kakosimos, P., Abu-Rub, H.: Deadbeat predictive control for PMSM drives with 3L NPC inverter accounting for saturation effects. IEEE J. Emerg. Sel. Top. Power Electron. (2018). https://doi.org/10.1109/JESTPE.2018.2796123,Jan

  14. Fang, Y., Xing, Y.: Design and analysis of three-phase reversible high-power-factor correction based on predictive current controller. IEEE Trans. Industr. Electron. 55(12), 4391–4397 (2008)

    Google Scholar 

  15. Wipasuramonton, P., Zhu, Z.Q., Howe, D.: Predictive current control with current-error correction for PM brushless AC drives. IEEE Trans. Ind. Appl. 42(4), 1071–1079 (2006)

    Google Scholar 

  16. Moreno, J.C., Espi Huerta, J.M., Gil, R.G., Gonzalez, S.A.: A robust predictive current control for three-phase grid-connected inverters. IEEE Trans. Ind. Electron. 56(6), 1993–2004 (2009)

    Google Scholar 

  17. Niu, L., Yang, M., Xu, D.: An adaptive robust predictive current control for PMSM with online inductance identification. Proc. Int. Rev. Electr. Eng. (IREE) 7(2), 3845–3856 (2012)

    Google Scholar 

  18. Cai, X.B., Zhang, Z.B., Wang, J.X., Kennel, R.: Optimal control solutions for PMSM drives: a comparison study with experimental assessments. IEEE J. Emerg. Sel. Top. Power Electron. 6(1), 352–362 (2017)

    Google Scholar 

  19. Butt, C.B., Hoque, M.A., Rahman, M.A.: Simplified fuzzy logic-based MTPA speed control of IPMSM drive. IEEE Trans. Ind. Appl. 40(6), 1529–1533 (2004)

    Google Scholar 

  20. Uddin, M.N., Rahman, M.A.: Fuzzy logic based speed control of an IPM synchronous motor drive. IEEE Trans. Ind. Appl. 3(3), 1259–1264 (1999)

    Google Scholar 

  21. Uddin, M.N., Rahman, M.A.: High-speed control of IPMSM drives using improved fuzzy logic algorithms. IEEE Trans. Ind. Electron. 54(1), 190–199 (2007)

    Google Scholar 

  22. Nasiri, A.: Full digital current control of permanent magnet synchronous motors for vehicular applications. IEEE Trans. Veh. Technol. 56(4), 1531–1537 (2007)

    Google Scholar 

  23. Li, N., Ming, Y., Dianguo, X.: An adaptive robust predictive current control for PMSM with online inductance identification. Int. Rev. Electr. Eng. 7(2)

    Google Scholar 

  24. Yin, Z., Han, X., Du, C., Liu, J., Zhong, Y.: Research on model predictive current control for induction machine based on immune-optimized disturbance observer. IEEE J. Emerg. Sel. Top. Power Electron. (2018, March). https://doi.org/10.1109/JESTPE.2018.2820050

  25. Li, K.: PID tuning for optimal closed-loop performance with specified gain and phase margins. IEEE Trans. Control Syst. Technol. 21(3), 1024–1030 (2013)

    Google Scholar 

  26. Kim, H., Degner, M.W., Guerrero, J.M., et al.: Discrete-time current regulator design for AC machine drives. IEEE Trans. Ind. Appl. 46(4), 1425–1435 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sridhar, S., Junaid, M., Yadaiah, N. (2021). Design and Tuning of Improved Current Predictive Control for PMSM. In: Gunjan, V.K., Zurada, J.M. (eds) Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough. Studies in Computational Intelligence, vol 956. Springer, Cham. https://doi.org/10.1007/978-3-030-68291-0_36

Download citation

Publish with us

Policies and ethics