Skip to main content

Linking the Features of Food Addiction and Drug Addiction

a new narrative of dopamine D2 receptors and beyond

  • Living reference work entry
  • First Online:
Handbook of Substance Misuse and Addictions

Abstract

The global obesity epidemic suggests that the high availability of palatable foods, rich in sugar and fat, could contribute to the occurrence of this scenario epidemic. Recent evidence suggests that as with drug addiction, obesity with compulsive eating behaviors involves reward circuitry of the brain, particularly the circuitry involving dopaminergic neural substrates. These findings lead to the theory that some foods, or substances added to them, can trigger an addiction process by activating in the brain the same reward system generated by drugs, the mesolimbic system via dopamine. Dopamine regulates emotional and motivational behavior via the mesolimbic dopaminergic pathway. Individuals with morbid obesity present a reduction in dopamine D2 receptors and may develop resistance to leptin, leading to compulsive eating and thus hampering weight loss. Palatable foods and drugs seem to activate this same circuit of reward and pleasure in the brain, through the release of dopamine.

Running Title (Short Title): Food and Drug Addiction: Dopamine Link

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AgRP:

Agouti-related peptide

ARC:

Arcuate nucleus

CNS:

Central nervous system

CCK:

Cholecystokinin

CART:

Cocaine- and amphetamine-regulated transcript

DA:

Dopamine

D1R:

Dopamine D1 receptor

D2R:

Dopamine D2 receptor

DRD4:

Dopamine receptor D4

NPY:

Neuropeptide Y

NAc:

Nucleus accumbens

PYY:

Peptide YY

POMC:

Pro-opiomelanocortin

VTA:

Ventral tegmental area

YFAS:

Yale Food Addiction Scale

Reference

  • Badman MK, Flier JS (2007) The adipocyte as an active participant in energy balance and metabolism. Gastroenterology 132(6):2103–2115

    Article  CAS  Google Scholar 

  • Baik J-H (2013) Dopamine signaling in food addiction: role of dopamine D2 receptors. BMB Rep 46(11):519–526

    Article  CAS  Google Scholar 

  • Belgardt BF, Okamura T, Brüning JC (2009) Hormone and glucose signalling in POMC and AgRP neurons. J Physiol 587:5305–5314

    Article  CAS  Google Scholar 

  • Blüher M (2019) Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 15:288–298

    Article  Google Scholar 

  • Bond CW et al (2020) Medial nucleus Accumbens projections to the ventral tegmental area control food consumption. J Neurosci 40(24):4727–4738

    Article  CAS  Google Scholar 

  • Borroto-Escuela DO et al (2018) A2AR-D2R Heteroreceptor complexes in cocaine reward and addiction. Trends Pharmacol Sci 39(12):1008–1020

    Article  CAS  Google Scholar 

  • Botticelli L et al (2020) Underlying susceptibility to eating disorders and drug abuse: genetic and pharmacological aspects of Dopamine D4 receptors. Nutrients 12:1–27

    Article  Google Scholar 

  • Campana B et al. (2019) ‘Obesity and food addiction: similarities to drug addiction’, Obes Med. Elsevier, 16, p. 100136. https://doi.org/10.1016/j.obmed.2019.100136.

  • Chaptini L, Peikin S (2008) Neuroendocrine regulation of food intake. Curr Opin Gastroenterol 24:223–229

    Article  CAS  Google Scholar 

  • Clare K et al (2021) Cocaine reduces the neuronal population while upregulating dopamine D2-Receptor-expressing neurons in brain reward regions: sex-effects. Front Pharmacol 12

    Google Scholar 

  • Coker CR et al (2021) Impact of high fat diet and ethanol consumption on neurocircuitry regulating emotional processing and metabolic function. Front Behav Neurosci 14:1–15

    Article  Google Scholar 

  • Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28(7):771–784

    Article  CAS  Google Scholar 

  • DiFeliceantonio AG, Small DM (2019) Dopamine and diet-induced obesity. Nat Neurosci 22:1–6

    Article  CAS  Google Scholar 

  • Domingo-Rodriguez L et al (2020) A specific prelimbic-nucleus accumbens pathway controls resilience versus vulnerability to food addiction. Nat Commun. Springer US 11:1–16. https://doi.org/10.1038/s41467-020-14458-y

    Article  CAS  Google Scholar 

  • Dong M, Chen G, Hu L (2020) Dopaminergic system alteration in anxiety and compulsive disorders: a systematic review of neuroimaging studies. Front Neurosci 14:1–12. https://doi.org/10.3389/fnins.2020.608520

    Article  Google Scholar 

  • Enriori PJ et al (2006) Leptin resistance and obesity. Obesity (Silver Spring) 14(S8):254S–258S

    Article  CAS  Google Scholar 

  • Fang X et al (2021) Chronic unpredictable stress induces depression-related behaviors by suppressing AgRP neuron activity. Mol Psychiatry

    Google Scholar 

  • Farooqi IS et al (2007) Leptin regulates striatal regions and human eating behavior. Science 317(5843):1355

    Article  CAS  Google Scholar 

  • Franco R, Reyes-Resina I, Navarro G (2021) Dopamine in health and disease: much more than a neurotransmitter. Biomedicines 9(109):1–13

    Google Scholar 

  • Fryar CD, Carroll MD, Afful J (2020) Prevalence of overweight, obesity, and severe obesity among adults aged 20 and over: United States, 1960–1962 through 2017–2018. Natl Center Health Stat

    Google Scholar 

  • Fulton S (2010) Appetite and reward. J Neuroendocrinol 31(1):85–103

    Article  Google Scholar 

  • GBD 2017 Causes of Death Collaborators (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392(10159):1736–1788

    Article  Google Scholar 

  • Gluck ME, Viswanath P, Stinson EJ (2017) Obesity, appetite, and the prefrontal cortex. Curr Obes Rep 6(4):380–388

    Article  Google Scholar 

  • Gordon EL et al (2018) What is the evidence for “food addiction?” a systematic review. Nutrients 10(4):1–30. https://doi.org/10.3390/nu10040477

    Article  CAS  Google Scholar 

  • Guadilla I et al (2021) Integrative analysis of physiological responses to high fat feeding with diffusion tensor images and neurochemical profiles of the mouse brain. Int J Obes. Springer US. https://doi.org/10.1038/s41366-021-00775-9

  • Gupta A, Osadchiy V, Mayer EA (2020) Brain–gut–microbiome interactions in obesity and food addiction. Nat Rev Gastroenterol Hepatol. Springer US 17:655–672. https://doi.org/10.1038/s41575-020-0341-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedegaard H, Miniño AM, Warner M (2018) Drug overdose deaths in the United States, 1999–2017. Natl Center Health Stat 329:8

    Google Scholar 

  • Johnson PM, Kenny PJ (2010) Addiction-like reward dysfunction and compulsive eating in obese rats: role for dopamine D2 receptors. Nat Neurosci 13(5):635–641

    Article  CAS  Google Scholar 

  • Klein MO et al (2019) Dopamine: functions, signaling, and association with neurological diseases. Cell Mol Neurobiol 39:31–59

    Article  Google Scholar 

  • Klenowski PM, Tapper AR (2018) Molecular, neuronal, and behavioral effects of ethanol and nicotine interactions. Handb Exp Pharmacol 248:187–212

    Article  Google Scholar 

  • Luo Z et al (2011) Acute cocaine induces fast activation of D1 receptor and progressive deactivation of D2 receptor striatal neurons: in vivo optical microprobe [Ca2+]i imaging. J Neurosci 31(37):13180–13190

    Article  CAS  Google Scholar 

  • Mills JG et al (2020) Overeating and food addiction in major depressive disorder: links to peripheral dopamine. Appetite 148:104586

    Article  Google Scholar 

  • Misganaw D (2021) Heteromerization of dopaminergic receptors in the brain: pharmacological implications. Pharmacol Res

    Google Scholar 

  • Moran TH, Ladenheim EE (2016) Physiological and neural controls of eating. Gastroenterol Clin N Am 45(4):581–599

    Article  Google Scholar 

  • Morton GJ et al (2006) Central nervous system control of food intake and body weight. Nature 443:289–295. https://doi.org/10.1038/nature05026

    Article  CAS  PubMed  Google Scholar 

  • Obregón AM et al (2021) Association of the dopamine D2 receptor rs1800497 polymorphism with food addiction, food reinforcement, and eating behavior in Chilean adults. Eat Weight Disord

    Google Scholar 

  • Pursey KM, Davis C, Burrows TL (2017) Nutritional aspects of food addiction. Curr Addict Rep 4:142–150

    Article  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80(1):1–27

    Article  CAS  Google Scholar 

  • Teixeira PJ, Marques MM (2018) Health behavior change for obesity management. Obes Facts 10(6):666–673

    Article  Google Scholar 

  • Tellez LA et al (2013) A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 341(6147):800–802

    Article  CAS  Google Scholar 

  • Volkow ND, Fowler JS (2000) Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex 10(3):318–325

    Article  CAS  Google Scholar 

  • Volkow ND et al (2008) Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. NeuroImage 42(4):1537–1543. https://doi.org/10.1016/j.neuroimage.2008.06.002.Low

    Article  PubMed  Google Scholar 

  • Volkow ND et al (2009) Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 56(Suppl 1):3–8

    Article  CAS  Google Scholar 

  • Volkow ND, Wang G-J, Baler RD (2011) Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci 15(1):37–46. https://doi.org/10.1016/j.tics.2010.11.001.Reward

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Wise RA, Baler R (2017) The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci 18:741–752. https://doi.org/10.1038/nrn.2017.130

    Article  CAS  PubMed  Google Scholar 

  • Wang G-J et al (2001) Brain dopamine and obesity. Lancet 357:354–357

    Article  CAS  Google Scholar 

  • Wiss DA, Avena N, Gold M (2020) Food addiction and psychosocial adversity: health implications. Nutrients 12(3521):1–26

    Google Scholar 

  • World Health Organization (2020a) Global health estimates 2020: Deaths by cause, age, sex, by country and by region, 2000–2019, Geneva

    Google Scholar 

  • World Health Organization (2020b) Obesity and overweight, World Health Organization (WHO).

    Google Scholar 

  • World Health Organization (2021) Drugs (psychoactive), Drugs (psychoactive).

    Google Scholar 

  • Yohn SE et al (2019) Shared behavioral and neurocircuitry disruptions in drug addiction, obesity and binge eating disorder: focus on group I mGluRs in the mesolimbic dopamine pathway. ACS Chem Neurosci 10(5):2125–2143

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila Cristina Potente Dutra Luquetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Brasiel, P.G., Luquetti, S.C.P.D. (2022). Linking the Features of Food Addiction and Drug Addiction. In: Patel, V.B., Preedy, V.R. (eds) Handbook of Substance Misuse and Addictions. Springer, Cham. https://doi.org/10.1007/978-3-030-67928-6_26-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67928-6_26-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67928-6

  • Online ISBN: 978-3-030-67928-6

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics