Skip to main content

Indoor Air Quality Monitoring Systems and COVID-19

  • Chapter
  • First Online:
Emerging Technologies During the Era of COVID-19 Pandemic

Abstract

Coronavirus pandemic is proven as wreaking havoc with the rising number of cases since its first identification in Wuhan, China. This invisible threat has taken approximately 1.06 M lives with more than 36.5 M cases worldwide as on October 9th, 2020. World Health Organization (WHO) estimated the mortality rate for COVID-19 to be around 3–4% with higher risk to the people that have underlying medical conditions such as respiratory disease, diabetes, cancer, heart disease, asthma, and kidney disease. Numerous public health experts have defined a clear link between coronavirus death rates and long-term exposure to air pollution, especially PM2.5 and NO2 levels. Medical health experts are working hard to find a reliable treatment for COVID-19. The need for real-time monitoring systems to promote indoor air quality is another critical concern that demands the attention of the research community. The main contribution of this study is to present the connection between COVID-19 pandemic, public health and indoor air quality while addressing the importance of real-time monitoring systems for public health and wellness. This chapter presents the necessity of developing indoor air quality monitoring systems for hospitals, schools, offices and homes for enhanced health and well-being.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization: Coronavirus. In: World Health Organization (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019. Accessed 17 May 2020

  2. World Health Organization: COVID-19 situation reports. In: World Health Organization (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports. Accessed 17 May 2020

  3. Cucinotta, D., Vanelli, M.: WHO declares COVID-19 a pandemic. Acta Biomed. 91, 157–160 (2020). https://doi.org/10.23750/abm.v91i1.9397

  4. Vellingiri, B., Jayaramayya, K., Iyer, M., et al.: COVID-19: a promising cure for the global panic. Sci. Total Environ. 725, 138277 (2020). https://doi.org/10.1016/j.scitotenv.2020.138277

    Article  Google Scholar 

  5. World Health Organization: Modes of transmission of virus causing COVID-19—mplications for IPC precaution recommendations (2020). https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations. Accessed 17 May 2020

  6. Nicola, M., Alsafi, Z., Sohrabi, C., et al.: The socio-economic implications of the Coronavirus and COVID-19 pandemic: a review. Int. J. Surg. (2020). https://doi.org/10.1016/j.ijsu.2020.04.018

    Article  Google Scholar 

  7. Ozili, P., Arun, T.: Spillover of COVID-19: impact on the Global Economy. SSRN Electron. J. (2020). https://doi.org/10.2139/ssrn.3562570

    Article  Google Scholar 

  8. Balakrishnan, K., Dey, S., Gupta, T., et al.: The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017. Lancet Planet. Health 3, e26–e39 (2019). https://doi.org/10.1016/S2542-5196(18)30261-4

    Article  Google Scholar 

  9. Jiang, F., Deng, L., Zhang, L., et al.: Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J. Gen. Intern. Med. 35, 1545–1549 (2020). https://doi.org/10.1007/s11606-020-05762-w

    Article  Google Scholar 

  10. Mitter, S.S., Vedanthan, R., Islami, F., et al.: Household fuel use and cardiovascular disease mortality: golestan cohort study. Circulation 133, 2360–2369 (2016). https://doi.org/10.1161/CIRCULATIONAHA.115.020288

    Article  Google Scholar 

  11. Sun, Q., Yue, P., Ying, Z., et al.: Air pollution exposure potentiates hypertension through reactive oxygen species-mediated activation of Rho/ROCK. Arterioscler. Thromb. Vasc. Biol. 28, 1760–1766 (2008). https://doi.org/10.1161/ATVBAHA.108.166967

    Article  Google Scholar 

  12. Weisel, C.P.: Assessing exposure to air toxics relative to asthma. Environ. Health Perspect. 110, 527–537 (2002)

    Article  Google Scholar 

  13. Wu, X., Nethery, R.C., Sabath, B.M., et al.: Exposure to air pollution and COVID-19 mortality in the United States: a nationwide cross-sectional study. Epidemiology (2020)

    Google Scholar 

  14. Goldizen, F.C., Sly, P.D., Knibbs, L.D.: Respiratory effects of air pollution on children. Pediatr. Pulmonol. 51, 94–108 (2016). https://doi.org/10.1002/ppul.23262

    Article  Google Scholar 

  15. Graudenz, G.S., Oliveira, C.H., Tribess, A., et al.: Association of air-conditioning with respiratory symptoms in office workers in tropical climate. Indoor Air 15, 62–66 (2005). https://doi.org/10.1111/j.1600-0668.2004.00324.x

    Article  Google Scholar 

  16. Patel, V., Kantipudi, N., Jones, G., et al.: Air pollution and cardiovascular disease: a review. Crit. Rev. Biomed. Eng. 44, 327–346 (2016). https://doi.org/10.1615/CritRevBiomedEng.2017019768

    Article  Google Scholar 

  17. Samet, J.M., Bahrami, H., Berhane, K.: Indoor air pollution and cardiovascular disease: new evidence from Iran. Circulation 133, 2342–2344 (2016). https://doi.org/10.1161/CIRCULATIONAHA.116.023477

    Article  Google Scholar 

  18. Chen, K., Wang, M., Huang, C., et al.: Air pollution reduction and mortality benefit during the COVID-19 outbreak in China. Lancet Planet Health (2020). https://doi.org/10.1016/S2542-5196(20)30107-8

    Article  Google Scholar 

  19. Guan, L., Zhou, L., Zhang, J., et al.: More awareness is needed for severe acute respiratory syndrome coronavirus 2019 transmission through exhaled air during non-invasive respiratory support: experience from China. Eur. Resp. J. 55, 2000352 (2020). https://doi.org/10.1183/13993003.00352-2020

    Article  Google Scholar 

  20. Ogen, Y.: Assessing nitrogen dioxide (NO2) levels as a contributing factor to coronavirus (COVID-19) fatality. Sci. Total Environ. 726, 138605 (2020). https://doi.org/10.1016/j.scitotenv.2020.138605

    Article  Google Scholar 

  21. Altmann, D.M., Douek, D.C., Boyton, R.J.: What policy makers need to know about COVID-19 protective immunity. The Lancet 395, 1527–1529 (2020). https://doi.org/10.1016/S0140-6736(20)30985-5

    Article  Google Scholar 

  22. US EPA O: Indoor Air Quality. In: US EPA (2017). https://www.epa.gov/report-environment/indoor-air-quality. Accessed 17 May 2020

  23. Saini, J., Dutta, M., Marques, G.: A comprehensive review on indoor air quality monitoring systems for enhanced public health. Sustain. Environ. Res. 30, 6 (2020). https://doi.org/10.1186/s42834-020-0047-y

    Article  Google Scholar 

  24. Ezzati, M., Kammen, D.M.: The health impacts of exposure to indoor air pollution from solid fuels in developing countries: knowledge, gaps, and data needs. Environ. Health Perspect. 110, 1057–1068 (2002). https://doi.org/10.1289/ehp.021101057

    Article  Google Scholar 

  25. Kurmi, O.P., Lam, K.B.H., Ayres, J.G.: Indoor air pollution and the lung in low- and medium-income countries. Eur. Respir. J. 40, 239–254 (2012). https://doi.org/10.1183/09031936.00190211

    Article  Google Scholar 

  26. Apte, K., Salvi, S.: Household air pollution and its effects on health. F1000Research 5, 2593 (2016). https://doi.org/10.12688/f1000research.7552.1

  27. Zhu, Y., Xie, J., Huang, F., Cao, L.: Association between short-term exposure to air pollution and COVID-19 infection: evidence from China. Sci. Total Environ. 727, 138704 (2020). https://doi.org/10.1016/j.scitotenv.2020.138704

    Article  Google Scholar 

  28. NYC Health: COVID-19: Data—NYC Health (2020). https://www1.nyc.gov/site/doh/covid/covid-19-data.page. Accessed 18 May 2020

  29. Office for National Statistics: Measuring pre-existing health conditions in death certification—deaths involving COVID-19: March 2020—Office for National Statistics (2020). https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/methodologies/measuringpreexistinghealthconditionsindeathcertificationdeathsinvolvingcovid19march2020. Accessed 18 May 2020

  30. Barcelo, D.: An environmental and health perspective for COVID-19 outbreak: meteorology and air quality influence, sewage epidemiology indicator, hospitals disinfection, drug therapies and recommendations. J Environ Chem Eng. (2020). https://doi.org/10.1016/j.jece.2020.104006

  31. Marques, G., Pitarma, R.: Indoor air quality monitoring for enhanced healthy buildings. In: Abdul Mujeebu, M. (ed.) Indoor Environmental Quality. IntechOpen (2019)

    Google Scholar 

  32. Satheesan, M.K., Mui, K.W., Wong, L.T.: A numerical study of ventilation strategies for infection risk mitigation in general inpatient wards. Build. Simul. (2020). https://doi.org/10.1007/s12273-020-0623-4

    Article  Google Scholar 

  33. Gan, W.H., Lim, J.W., Koh, D.: Preventing intra-hospital infection and transmission of coronavirus disease 2019 in health-care workers. Safety Health Work 11(2), S209379112030161X (2020). https://doi.org/10.1016/j.shaw.2020.03.001

  34. Maki, D.G., Crnich, C.J., Safdar, N.: Chapter 51—Nosocomial infection in the intensive care unit. In: Parrillo, J.E., Dellinger, R.P. (eds.) Critical Care Medicine, 3rd edn, pp. 1003–1069. Mosby, Philadelphia (2008)

    Chapter  Google Scholar 

  35. Slack, R.C.B.: 69 - Hospital infection. In: Greenwood, D., Barer, M., Slack, R., Irving, W. (eds.) Medical Microbiology, Eighteenth edn, pp. 718–726. Churchill Livingstone, Edinburgh (2012)

    Chapter  Google Scholar 

  36. Wong, S.C.Y., Kwong, R.T.-S., Wu, T.C., et al.: Risk of nosocomial transmission of coronavirus disease 2019: an experience in a general ward setting in Hong Kong. J. Hosp. Infect. 105, 119–127 (2020). https://doi.org/10.1016/j.jhin.2020.03.036

    Article  Google Scholar 

  37. Chamseddine, A., El-Fadel, M.: Exposure to air pollutants in hospitals: indoor–outdoor correlations. In: Brebbia, C.A. (ed.) WIT Transactions on the Built Environment, 1st ed.,, pp. 707–716. WIT Press (2015)

    Google Scholar 

  38. El-Sharkawy, M.F., Noweir, M.E.H.: Indoor air quality levels in a University Hospital in the Eastern Province of Saudi Arabia. J. Family Commun. Med. 21, 39–47 (2014). https://doi.org/10.4103/2230-8229.128778

    Article  Google Scholar 

  39. Gola, M., Settimo, G., Capolongo, S.: Chemical pollution in healing spaces: the decalogue of the best practices for adequate indoor air quality in inpatient rooms. Int. J. Environ. Res. Public Health 16 (2019). https://doi.org/10.3390/ijerph16224388

  40. Li, Y., Leung, G.M., Tang, J.W., et al.: Role of ventilation in airborne transmission of infectious agents in the built environment? a multidisciplinary systematic review. Indoor Air 17, 2–18 (2007). https://doi.org/10.1111/j.1600-0668.2006.00445.x

    Article  Google Scholar 

  41. Amegah, A.K., Jaakkola, J.J.: Household air pollution and the sustainable development goals. Bull. World Health Organ. 94, 215–221 (2016). https://doi.org/10.2471/BLT.15.155812

    Article  Google Scholar 

  42. Chafe, Z.A., Brauer, M., Klimont, Z., et al.: Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease. Environ. Health Perspect. 122, 1314–1320 (2014). https://doi.org/10.1289/ehp.1206340

    Article  Google Scholar 

  43. Josyula, S., Lin, J., Xue, X., et al.: Household air pollution and cancers other than lung: a meta-analysis. Environ. Health 14, 24 (2015). https://doi.org/10.1186/s12940-015-0001-3

  44. McCracken, J.P., Wellenius, G.A., Bloomfield, G.S., et al.: Household air pollution from solid fuel use: evidence for links to CVD. Glob. Heart 7, 223–234 (2012). https://doi.org/10.1016/j.gheart.2012.06.010

    Article  Google Scholar 

  45. Pope, D.P., Mishra, V., Thompson, L., et al.: Risk of low birth weight and stillbirth associated with indoor air pollution from solid fuel use in developing countries. Epidemiol. Rev. 32, 70–81 (2010). https://doi.org/10.1093/epirev/mxq005

    Article  Google Scholar 

  46. Banerjee, A., Pasea, L., Harris, S., et al.: Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: a population-based cohort study. Lancet (2020). https://doi.org/10.1016/S0140-6736(20)30854-0

    Article  Google Scholar 

  47. Endocrinology TLD & (2020) COVID-19: underlying metabolic health in the spotlight. Lancet Diabetes Endocrinol. (2020). https://doi.org/10.1016/S2213-8587(20)30164-9

  48. Ghergu, C., Sushama, P., Vermeulen, J., et al.: Dealing with indoor air pollution: an ethnographic tale from urban slums in Bangalore. Int. J. Health Sci. 6, 348–361 (2016)

    Google Scholar 

  49. Steinemann, A.: Volatile emissions from common consumer products. Air Qual. Atmos. Health 8, 273–281 (2015). https://doi.org/10.1007/s11869-015-0327-6

    Article  Google Scholar 

  50. Kwon, J.-W., Park, H.-W., Kim, W.J., et al.: Exposure to volatile organic compounds and airway inflammation. Environ Health 17(1) (2018). https://doi.org/10.1186/s12940-018-0410-1

  51. Win-Shwe, T.-T., Fujimaki, H., Arashidani, K., Kunugita, N.: Indoor volatile organic compounds and chemical sensitivity reactions. Clin. Dev. Immunol. 2013. https://doi.org/10.1155/2013/623812

  52. Giamarellos-Bourboulis, E.J., Netea, M.G., Rovina, N., et al.: Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe S1931312820302365 (2020). https://doi.org/10.1016/j.chom.2020.04.009

  53. Tay, M.Z., Poh, C.M., Rénia, L., et al.: The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 1–12 (2020). https://doi.org/10.1038/s41577-020-0311-8

  54. Liu, P., Wang, X., Fan, J., et al.: Effects of air pollution on hospital emergency room visits for respiratory diseases: urban-suburban differences in Eastern China. Int. J. Environ. Res. Public Health 13(3), 41 (2016). https://doi.org/10.3390/ijerph13030341

  55. Zhang, H., Niu, Y., Yao, Y., et al.: The impact of ambient air pollution on daily hospital visits for various respiratory diseases and the relevant medical expenditures in Shanghai, China. Int. J. Environ. Res. Public Health 15(3), 425 (2018). https://doi.org/10.3390/ijerph15030425

  56. Zakaria Abouleish, M.Y.: Indoor air quality and coronavirus disease (COVID-19). Public Health (2020). https://doi.org/10.1016/j.puhe.2020.04.047

    Article  Google Scholar 

  57. Hapsari, A.A., Hajamydeen, A.I., Abdullah, M.I.I.: A review on indoor air quality monitoring using IoT at campus environment. Int. J. Eng. Technol. 7, 55–60 (2018). https://doi.org/10.14419/ijet.v7i4.22.22191

  58. Sun, S., Zheng, X., Villalba-Díez, J., Ordieres-Meré, J.: Indoor air-quality data-monitoring system: long-term monitoring benefits. Sensors 19, 4157 (2019). https://doi.org/10.3390/s19194157

    Article  Google Scholar 

  59. Lozano, J., Suárez, J.I., Arroyo, P., et al.: Wireless sensor network for indoor air quality monitoring. Chem. Eng. Trans. 30, 319–324 (2012). https://doi.org/10.3303/CET1230054

    Article  Google Scholar 

  60. Yi, W., Lo, K., Mak, T., et al.: A survey of wireless sensor network based air pollution monitoring systems. Sensors 15, 31392–31427 (2015). https://doi.org/10.3390/s151229859

    Article  Google Scholar 

  61. Elbayoumi, M., Ramli, N.A., Fitri Md Yusof, N.F.: Development and comparison of regression models and feedforward backpropagation neural network models to predict seasonal indoor PM2.5–10 and PM2.5 concentrations in naturally ventilated schools. Atmos. Pollut. Res. 6, 1013–1023 (2015). https://doi.org/10.1016/j.apr.2015.09.001

    Article  Google Scholar 

  62. Kolokotsa, D.: Artificial intelligence in buildings: a review of the application of fuzzy logic. Adv. Build. Energy Res. 1, 29–54 (2007). https://doi.org/10.1080/17512549.2007.9687268

    Article  Google Scholar 

  63. Masih, A.: Machine learning algorithms in air quality modeling. Glob. J. Environ. Sci. Manag. 5, 515–534 (2019). https://doi.org/10.22034/GJESM.2019.04.10

  64. Kumar, P., Skouloudis, A.N., Bell, M., et al.: Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings. Sci. Total Environ. 560–561, 150–159 (2016). https://doi.org/10.1016/j.scitotenv.2016.04.032

    Article  Google Scholar 

  65. Revel, G., Arnesano, M., Pietroni, F., et al.: Cost-effective technologies to control indoor air quality and comfort in energy efficient building retrofitting. Environ. Eng. Manag. J. 14, 1487–1494 (2015). https://doi.org/10.30638/eemj.2015.160

  66. Bruce, N., Perez-Padilla, R., Albalak, R.: Indoor air pollution in developing countries: a major environmental and public health challenge. Bull. World Health Organ. 78, 1078–1092 (2000)

    Google Scholar 

  67. Roberton, T., Carter, E.D., Chou, V.B., et al.: Early estimates of the indirect effects of the COVID-19 pandemic on maternal and child mortality in low-income and middle-income countries: a modelling study. Lancet Glob. Health (2020). https://doi.org/10.1016/S2214-109X(20)30229-1

    Article  Google Scholar 

  68. Marques, G., Pitarma, R.: A cost-effective air quality supervision solution for enhanced living environments through the internet of things. Electronics 8, 170 (2019). https://doi.org/10.3390/electronics8020170

    Article  Google Scholar 

  69. Idrees, Z., Zou, Z., Zheng, L.: Edge computing based IoT architecture for low cost air pollution monitoring systems: a comprehensive system analysis. Design Considerations Dev. Sens. 18, 3021 (2018). https://doi.org/10.3390/s18093021

    Article  Google Scholar 

  70. Tiele, A., Esfahani, S., Covington, J.: Design and development of a low-cost, portable monitoring device for indoor environment quality. J. Sens. 2018, 1–14 (2018). https://doi.org/10.1155/2018/5353816

    Article  Google Scholar 

  71. Yu, T.-C., Lin, C.-C.: An intelligent wireless sensing and control system to improve indoor air quality: monitoring, prediction, and preaction. Int. J. Distrib. Sens. Netw. 11, 140978 (2015). https://doi.org/10.1155/2015/140978

    Article  Google Scholar 

  72. Okokpujie, K., Noma-Osaghae, E., Odusami, M., et al.: a smart air pollution monitoring system. Int. J. Civil Eng. Technol. 9, 799–809 (2018)

    Google Scholar 

  73. Bulot, F.M.J., Russell, H.S., Rezaei, M., et al.: Laboratory comparison of low-cost particulate matter sensors to measure transient events of pollution. Sensors 20, 2219 (2020). https://doi.org/10.3390/s20082219

    Article  Google Scholar 

  74. Li, J., Mattewal, S.K., Patel, S., Biswas, P.: Evaluation of nine low-cost-sensor-based particulate matter monitors. Aerosol Air Qual. Res. 20, 254–270 (2019). https://doi.org/10.4209/aaqr.2018.12.0485

    Article  Google Scholar 

  75. Liu, M., Lin, J., Boersma, K.F., et al.: Improved aerosol correction for OMI tropospheric NO2 retrieval over East Asia: constraint from CALIOP aerosol vertical profile. Atmos. Meas. Tech. 12, 1–21 (2019). https://doi.org/10.5194/amt-12-1-2019

    Article  Google Scholar 

  76. Morawska, L., Tang, J.W., Bahnfleth, W., et al.: How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 142, 105832 (2020). https://doi.org/10.1016/j.envint.2020.105832

    Article  Google Scholar 

  77. Sun, C., Zhai, Z.: The efficacy of social distance and ventilation effectiveness in preventing COVID-19 transmission. Sustain. Cities Soc. 62, 102390 (2020). https://doi.org/10.1016/j.scs.2020.102390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saini, J., Dutta, M., Marques, G. (2021). Indoor Air Quality Monitoring Systems and COVID-19. In: Arpaci, I., Al-Emran, M., A. Al-Sharafi, M., Marques, G. (eds) Emerging Technologies During the Era of COVID-19 Pandemic. Studies in Systems, Decision and Control, vol 348. Springer, Cham. https://doi.org/10.1007/978-3-030-67716-9_9

Download citation

Publish with us

Policies and ethics