Skip to main content

Fuzzy Sets and Extensions: A Literature Review

  • Chapter
  • First Online:
Toward Humanoid Robots: The Role of Fuzzy Sets

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 344))

Abstract

Humanoid robots generated by inspiring by human appearances and abilities have become essential in human society to improve the quality of their life. All over the world, there have been many researchers who have focused on humanoid robots to develop their capabilities. Generally, humanoid robot systems include mechanisms of decision making and information processing. Because of the uncertainty behind decision making and information processes, fuzzy sets can be used in humanoid systems efficiently. This study presents a comprehensive literature review on the recent developments and theories associated with fuzzy set models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, C.H., Wang, C.C., Wang, Y.T., Wang, P.T.: Fuzzy logic controller design for intelligent robots. Math. Probl. Eng. (2017)

    Google Scholar 

  2. Zadeh, L.A.: Information and control. Fuzzy sets 8(3), 338–53 (1965)

    Google Scholar 

  3. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8(3), 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  4. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  Google Scholar 

  5. Sari, I.U., Kahraman, C.: Intuitionistic Fuzzy Z-numbers. In: Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I., Cebi, S., Tolga, A. (eds.) Intelligent and Fuzzy Techniques: Smart and Innovative Solutions. INFUS 2020. Advances in Intelligent Systems and Computing, vol. 1197. Springer, Cham (2021)

    Google Scholar 

  6. Xu, Z.: Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Kongzhi Yu Juece/Control Decis. 22(2), 215–219 (2007)

    Google Scholar 

  7. Wei, G., Wang, X.: Some geometric aggregation operators based on interval-valued intuitionistic fuzzy sets and their application to group decision making. In: 2007 International Conference on Computational Intelligence and Security (CIS 2007), pp. 495–499. Harbin (2007)

    Google Scholar 

  8. Abdullah, L., Ismail, W.K.: Hamming distance in intuitionistic fuzzy sets and interval- valued intuitionistic fuzzy sets: a comparative analysis. Adv. Comput. Math. Appl. 1(1), 7–11 (2012)

    Google Scholar 

  9. Karasan, A., Kahraman, C.: Interval-valued neutrosophic extension of EDAS method, In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds.) Advances in Fuzzy Logic and Technology 2017. EUSFLAT 2017, IWIFSGN 2017. Advances in Intelligent Systems and Computing, vol. 642, pp. 343–357. Springer, Cham (2017)

    Google Scholar 

  10. Yager, R.R.: On the theory of bags. Int. J. Gener. Syst. 13(1), 23–37 (1986)

    Article  MathSciNet  Google Scholar 

  11. Smarandache, F.: Neutrosophy, Neutrosophic Probability, Set, and Logic. Amer. Res. Press, Rehoboth, 105 (1998)

    Google Scholar 

  12. Bolturk and Kahraman: A novel interval-valued neutrosophic AHP with cosine similarity measure. Soft. Comput. 22, 4941–4958 (2018)

    Article  Google Scholar 

  13. Li, Y., Wang, Y., Liu, P.: Multiple attribute group decisionmaking methods based on trapezoidal fuzzy two-dimension linguistic power generalized aggregation operators. Soft Comput. 20(7), 2689–2704 (2016)

    Article  Google Scholar 

  14. Zhang, H.Y., Wang J.Q., Chen, X.H.: Interval neutrosophic sets and their application in multicriteria decision-making problems. Sci. Worl J. 15 (2014)

    Google Scholar 

  15. Karasan, A., Kahraman, C.: A noval ıntuitionistic fuzzy dematel—anp—topsis ıntegrated methodology for freight village location selection. J. Intell. Fuzzy Syst., 1–18 (2017)

    Google Scholar 

  16. Kahraman, C., Otay, İ. (eds.).: Fuzzy Multi-criteria Decision-Making Using Neutrosophic Sets, Vol. 16, pp. 382–394. Springer, Berlin, Germany (2019)

    Google Scholar 

  17. Boltürk, E., Karasan, A., Kahraman, C.: Simple additive weighting and weighted product methods using neutrosophic sets. In: Kahraman, C., Otay, I. (eds.), Fuzzy Multicriteria Decision Making Using Neutrosophic Sets, Studies in Fuzziness and Soft Computing, vol. 369, pp. 647–676. © Springer Nature Switzerland AG 2019 (2019). https://doi.org/https://doi.org/10.1007/978-3-030-00045-5_25

  18. Biswas, P., Pramanik, S., Giri, B.C.: TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 27(3), 727–737 (2016)

    Article  Google Scholar 

  19. Wang, H., Smarandache, F., Sunderraman, R., Zhang, Y.Q.: Interval neutrosophic sets and logic: theory and applications in computing, 1–87 (2005)

    Google Scholar 

  20. Garibaldi, J.M., Ozen, T.: Uncertain fuzzy reasoning: a case study in modelling expert decision making. IEEE Trans. Fuzzy Syst. 15(1), 16–30 (2007)

    Article  Google Scholar 

  21. Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)

    MATH  Google Scholar 

  22. Yager, R.R.: Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst. 22, 958–965 (2014)

    Google Scholar 

  23. Atanassov, K.T.: More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 33(1), 37–45 (1989)

    Article  MathSciNet  Google Scholar 

  24. Zhang, X., Xu, Z.: Extension of TOPSIS to multiple criteria decision making with pythagorean fuzzy sets. Int. J. Intell. Syst. 29(12), 1061–1078 (2014)

    Article  Google Scholar 

  25. Peng, X., Yang, Y.: Some results for Pythagorean fuzzy sets. Int. J. Intell. Syst. 30(11), 1133–1160 (2015)

    Article  MathSciNet  Google Scholar 

  26. Peng, X., Yang, Y.: Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. Int. J. Intell. Syst. 31(5), 444–487 (2016)

    Article  Google Scholar 

  27. Kahraman, C., Oztaysi, B., Onar, S.c.: Multicriteria Scoring Methods using Pythagorean Fuzzy Sets. Adv. Intell. Syst. Comput. 642 (2018)

    Google Scholar 

  28. Kahraman, C., Onar, S.C., Oztaysi, B: Present worth analysis using pythagorean fuzzy sets. In: Kacprzyk, J., Szmidt, E., Zadrożny, S., Atanassov, K., Krawczak, M. (eds.) Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, vol 642. Springer (2018)

    Google Scholar 

  29. Karasan, A., Kahraman, C.: A novel intuitionistic fuzzy DEMATELANPTOPSIS integrated methodology for freight village location selection. J. Intell. Fuzzy Syst. Preprint, pp. 1–18 (2017)

    Google Scholar 

  30. Karasan, A., Ilbahar, E., Kahraman, C.: A novel pythagorean fuzzy AHP and its application to landfill site selection problem. Soft. Comput. (2018). https://doi.org/10.1007/s00500-018-3649-0

    Article  Google Scholar 

  31. Cường, B.C.: Picture fuzzy sets. J. Comput. Sci. Cybernet. 30(4), 409 (2014)

    Google Scholar 

  32. Cuong B.C., Kreinovich, V.: Picture fuzzy sets-a new concept for computational intelligence problems. In: 2013 Third World Congress on Information and Communication Technologies (WICT 2013), pp. 1–6 (2013)

    Google Scholar 

  33. Wei, G.W.: Picture fuzzy aggregation operators and their application to multiple attribute decision making. J. Intell. Fuzzy Syst. 33, 1–12 (2017). https://doi.org/10.3233/JIFS-161798

    Article  Google Scholar 

  34. Meksavang, P., Shi, H., Lin, S.M., Li, H.C.: An extended picture fuzzy VIKOR approach for sustainable supplier management and its application in the beef industry. Symmetry 11(4), 468 (2019)

    Article  Google Scholar 

  35. Chen, S.M., Tan, J.M.: Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets Syst. 67(2), 163–172 (1994)

    Article  MathSciNet  Google Scholar 

  36. Dutta, P.: Medical diagnosis based on distance measures between picture fuzzy sets. Int. J. Fuzzy Syst. Appl. (IJFSA) 7(4), 15–36 (2018)

    Google Scholar 

  37. Yager, R.R.: Generalized orthopair fuzzy sets. IEEE Trans. Fuzzy Syst. 25, 1222–1230 (2017)

    Article  Google Scholar 

  38. Ju, Y., Luo, C., Ma, J., Gao, H., Santibanez Gonzalez, E.D., Wang, A.: Some interval-valued q-rung orthopair weighted averaging operators and their applications to multiple-attribute decision making. Int. J. Intell. Syst. 34(10), 2584–260 (2019)

    Google Scholar 

  39. Senapati, T., Yager, R.R.: Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Eng. Appl. Artif. Intell. 85, 112–121 (2019)

    Article  Google Scholar 

  40. Senapati, T., Yager, R.: Fermatean fuzzy sets. J. Amb. Intell. Humanized Comput. 11 (2019) https://doi.org/10.1007/s12652-019-01377-0

  41. Kahraman, C., Gündoğdu, F.K., Onar, S.C., Oztaysi, B.: Hospital Location Selection Using Spherical Fuzzy TOPSIS. In: 2019 Conference of the İnternational Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019). Atlantis Press (2019)

    Google Scholar 

  42. Kutlu Gündoğdu, F., Kahraman, C.: A novel spherical fuzzy analytic hierarchy process and its renewable energy application. Soft Comput. (2019)

    Google Scholar 

  43. Kutlu Gündoğdu, F., Kahraman, C.: Extension of WASPAS with spherical fuzzy sets. Informatica 30(2), 269–292 (2019)

    Article  Google Scholar 

  44. Kutlu Gündoğdu, F., Kahraman, C.: A novel spherical fuzzy analytic hierarchy process and its renewable energy application. Soft Comput. (2019)

    Google Scholar 

  45. Kutlu Gündoğdu, F., Kahraman, C.: A novel VIKOR method using spherical fuzzy sets and its application to warehouse site selection. J. Intell. Fuzzy Syst. 37(1), 1197–1211 (2019)

    Google Scholar 

  46. Biswas, P., Pramanik, S., Giri, B.C.: A new methodology for neutrosophic multi-attribute decisionmaking with unknown weight information. Neutrosophic Sets Syst. 3, 42–50 (2014)

    Google Scholar 

  47. Gündoğdu, FK., Kahraman, C.: Spherical Fuzzy Sets and Decision Making Applications. In International Conference on Intelligent and Fuzzy Systems, pp. 979–987. Springer, Cham

    Google Scholar 

  48. Karasan, A., Kahraman, C.: Interval-valued neutrosophic extension of EDAS method. Adv. Intell. Syst. Comput. 642, 343–357 (2018)

    Google Scholar 

  49. Kutlu Gündoğdu, F., Kahraman, C.: Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. 36(1), 337–352 (2019)

    Article  Google Scholar 

  50. Kutlu Gündoğdu, F., Kahraman, C.: A novel fuzzy TOPSIS method using emerging intervalvalued spherical fuzzy sets. Eng. Appl. Artif. Intell. 85, 307–323 (2019)

    Article  Google Scholar 

  51. Kutlu Gündoğdu, F., Kahraman, C.: A novel spherical fuzzy QFD method and its application to the linear delta robot technology development. Eng. Appl. Artif. Intell. 87, 103348 (2020)

    Article  Google Scholar 

  52. Kutlu Gündoğdu, F., Kahraman, C.: Spherical fuzzy sets and spherical fuzzy topsis method. J. Intell. Fuzzy Syst. 36(1), 337–52 (2019)

    Google Scholar 

  53. Smarandache, F.: A unifying field in logics. neutrosophy: neutrosophic probability, set and logic (1999)

    Google Scholar 

  54. Ju, Y., Luo, C., Ma, J., Gao, H., Santibanez Gonzalez, E. D., Wang, A.: A Some interval‐valued q‐rung orthopair weighted averaging operators and their applications to multiple‐attribute decision making. Int. J. Intell. Syst. 34(10), 2584-2606 (2019)

    Google Scholar 

  55. Wang, H., Smarandache, F., Zhang, Y.Q., Sunderraman, R.: Single valued neutrosophic sets. Multispace Multistruct. 4, 410–413 (2010)

    MATH  Google Scholar 

  56. Wang, J., Gao, H., Wei, G.W., Wei, Y.: Methods for multiple-attribute group decision making with q-Rung interval-valued orthopair fuzzy information and their applications to the selection of green suppliers. Symmetry 11, 56 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eda Bolturk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bolturk, E., Kahraman, C. (2021). Fuzzy Sets and Extensions: A Literature Review. In: Kahraman, C., Bolturk, E. (eds) Toward Humanoid Robots: The Role of Fuzzy Sets. Studies in Systems, Decision and Control, vol 344. Springer, Cham. https://doi.org/10.1007/978-3-030-67163-1_2

Download citation

Publish with us

Policies and ethics