Skip to main content

Computer Methods for Localization of the Subthalamic Nucleus During Deep Brain Stimulation Surgeries for Treatment of Parkinson Disease

  • Chapter
  • First Online:
Recommender Systems for Medicine and Music

Part of the book series: Studies in Computational Intelligence ((SCI,volume 946))

  • 449 Accesses

Abstract

In the neurobiological mechanism of Parkinson’s Disease (PD), a certain part of the brain called the Subthalamic Nucleus (STN) becomes overactive. This pathologically increased activity inhibits other regions of the brain, causing many symptoms observed in PD patients. The hyperactivity of the STN can be lowered using a special electrical stimulating electrode. In the neurosurgical treatment of Parkinson’s Disease (PD), the goal is the precise placement of such electrode within the Subthalamic Nucleus. As STN does not significantly differ from adjacent structures on images provided by the CT or MRI, these standard techniques of medical imaging can provide only the approximate localization of the STN. The final localization of the STN has to be pinpointed during surgery. For this, typically, three to five very thin electrodes are inserted into the patient’s brain and advanced towards the expected STN location given by CT and MRI. Electrodes in measured steps approach, traverse, and exit out of the STN. At each step, the neurobiological activity of brain tissue surrounding the leads of the electrodes is recorded. By careful analysis of recordings provided by these electrodes, it is possible to discriminate which recordings were recorded within the STN. This, in turn, gives the extent of the STN in the 3D space on trajectories of the recording electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parent A, Hazrati L-N.: Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res Rev. 20, 128–154 (1995). Elsevier

    Google Scholar 

  2. Israel, Z., Burchiel, K.J.: Microelectrode recording in movement disorder surgery. Thieme (2011)

    Google Scholar 

  3. Shamir, R.R., Zaidel, A., Joskowicz, L., Bergman, H., Israel, Z.: Microelectrode recording duration and spatial density constraints for automatic targeting of the subthalamic nucleus. Stereotact. Funct. Neurosurg. 90, 325–334 (2012). Karger Publishers

    Google Scholar 

  4. Moran, A., Bar-Gad, I., Bergman, H., Israel, Z.: Real-time refinement of subthalamic nucleus targeting using Bayesian decision-making on the root mean square measure. Mov. Disord. (2006). https://doi.org/10.1002/mds.20995

    Article  Google Scholar 

  5. Winestone, J.S., Zaidel, A., Bergman, H., Israel, Z.: The use of macroelectrodes in recording cellular spiking activity. J. Neurosci. Methods. 206, 34–39 (2012). Elsevier

    Google Scholar 

  6. Zaidel, A., Spivak, A., Shpigelman, L., Bergman, H., Israel, Z.: Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model. Mov Disord. 24, 1785–1793 (2009). Wiley Online Library

    Google Scholar 

  7. Pizzolato, G., Mandat, T.: Deep brain stimulation for movement disorders. Front. Integr. Neurosci. 6, 2 (2012). Frontiers

    Google Scholar 

  8. Nieuwenhuys, R., Voogd, J., Van Huijzen, C.: The Human Central Nervous System: A Synopsis and Atlas. Springer Science & Business Media (2007)

    Google Scholar 

  9. Hutchison, W.D., Allan, R.J., Opitz, H., Levy, R., Dostrovsky, J.O., Lang, A.E., et al.: Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann Neurol. 44, 622–628 (1998). Wiley Online Library

    Google Scholar 

  10. Massey, L.A., Miranda, M.A., Zrinzo, L., Al-Helli, O., Parkes, H.G., Thornton, J.S., et al.: High resolution MR anatomy of the subthalamic nucleus: imaging at 9.4 T with histological validation. Neuroimage. 59, 2035–2044 (2012). Elsevier

    Google Scholar 

  11. Starr, P.A.: Placement of deep brain stimulators into the subthalamic nucleus or globus pallidus internus: technical approach. Stereotact. Funct. Neurosurg. 79, 118–145 (2002). Karger Publishers

    Google Scholar 

  12. Benazzouz, A., Breit, S., Koudsie, A., Pollak, P., Krack, P., Benabid, A.-L.:Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Mov. Disord. 17 (2002). Wiley Online Library

    Google Scholar 

  13. Schmahmann, J., Pandya, D.: Fiber pathways of the brain. OUP USA (2009)

    Google Scholar 

  14. Temel, Y., Blokland, A., Steinbusch, H.W.M., Visser-Vandewalle, V.: The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog. Neurobiol. 76, 393–413 (2005). Elsevier

    Google Scholar 

  15. Mallet, L., Schüpbach, M., N’Diaye, K., Remy, P., Bardinet, E., Czernecki, V. et al.: Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proc Natl Acad Sci. Nat. Acad. Sci. 104, 10661–10666 (2007)

    Google Scholar 

  16. Mandat, T.S., Hurwitz, T., Honey, C.R.: Hypomania as an adverse effect of subthalamic nucleus stimulation: report of two cases. Acta Neurochir (Wien). 148, 895–898 (2006). Springer

    Google Scholar 

  17. Anderson, P.B., Rogers, M.H.: Deep Brain Stimulation: Applications, Complications and Side Effects. Nova Biomedical Books (2009)

    Google Scholar 

  18. Priori, A., Egidi, M., Pesenti, A., Rohr, M.: Do intraoperative microrecordings improve subthalamic nucleus targeting in stereotactic neurosurgery for Parkinson’s disease? J. Neurosurg. Sci. 47, 56 (2003). Edizioni Minerva Medica

    Google Scholar 

  19. Schaltenbrand, G.: Atlas for stereotaxy of the human brain. Georg Thieme (1977). Stuttgart

    Google Scholar 

  20. Hendelman, W.: Atlas of Functional Neuroanatomy. CRC Press (2015)

    Google Scholar 

  21. Levy, R., Hutchison, W.D., Lozano, A.M., Dostrovsky, J.O.: High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J Neurosci. Soc Neurosci. 20, 7766–7775 (2000)

    Article  Google Scholar 

  22. Ciecierski, K., Mandat, T., Rafał, R., Raś, Z.W., Przybyszewski, A.W.: Konrad Ciecierski, Tomasz Mandat, Rafał Rola, Zbigniew W. Raś AWP. Computer aided subthalamic nucleus (STN) localization during deep brain stimulation (DBS) surgery in Parkinson’s patients. Annales Academiae Medicae Silesiensis, pp. 275–283 (2014)

    Google Scholar 

  23. Mandat. T., Tykocki, T., Koziara, H., Koziorowski, D., Brodacki, B., Rafał, R., Bonicki, W., et al.: Subthalamic deep brain stimulation for the treatment of Parkinson disease. Neurol. Neurochir. Pol. 45, 32–36 (2011). Elsevier

    Google Scholar 

  24. Novak, P., Daniluk, S., Ellias, S.A., Nazzaro, J.M.: Detection of the subthalamic nucleus in microelectrographic recordings in Parkinson disease using the high-frequency (> 500 Hz) neuronal background. J Neurosurg. 106, 175–179. American Association of Neurological Surgeons (2007)

    Google Scholar 

  25. Kano, T., Katayama, Y., Kobayashi, K., Kasai, M., Oshima, H., Fukaya, C. et al.: Detection of boundaries of subthalamic nucleus by multiple-cell spike density analysis in deep brain stimulation for Parkinson’s disease. Adv. Funct. Repar. Neurosurg, 33–35 (2006). Neurosurgery

    Google Scholar 

  26. Saleh, S., Swanson, K., Lake, W.: Functional KS-S and, 2015 undefined. Awake neurophysiologically guided versus asleep MRI-guided STN DBS for Parkinson disease: a comparison of outcomes using levodopa equivalents. karger.com. https://www.karger.com/Article/Abstract/442425

  27. Ho, A., Ali, R., Connolly, I.: JH-JNN, 2018 U. Awake versus asleep deep brain stimulation for Parkinson’s disease: a critical comparison and meta-analysis. jnnp.bmj.com. http://jnnp.bmj.com/content/early/2018/01/31/jnnp-2016-314500.abstract

  28. Freeman, E.A., Moisen, G.G.: A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Modell. 217, 48–58 (2008). Elsevier

    Google Scholar 

  29. Ijcai, R.K-.: 1995 undefined. A study of cross-validation and bootstrap for accuracy estimation and model selection. pdfs.semanticscholar.org. https://pdfs.semanticscholar.org/0be0/d781305750b37acb35fa187febd8db67bfcc.pdf

  30. Koch, C.: Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press (2004)

    Google Scholar 

  31. Pettersen, K.H., Einevoll, G.T.: Amplitude variability and extracellular low-pass filtering of neuronal spikes. Biophys J. 94, 784–802 (2008). Elsevier. https://doi.org/10.1529/biophysj.107.111179

  32. Ciecierski, K., Raś, Z.W.: Przybyszewski AW. Spike sorting based upon PCA over DWT frequency band selection

    Google Scholar 

  33. Quiroga, R.Q., Nadasdy, Z., Ben-Shaul, Y.: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16, 1661–1687 (2004). MIT Press. https://doi.org/10.1162/089976604774201631

  34. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theor. IEEE 41, 613–627 (1995). https://doi.org/10.1109/18.382009

  35. Jensen, A., la Cour-Harbo, A.: Ripples in Mathematics: the Discrete Wavelet Transform. Springer Science & Business Media (2001)

    Google Scholar 

  36. Lior, R.: Data Mining with Decision Trees: Theory and Applications. World scientific (2014)

    Google Scholar 

  37. Sun, Y., Kamel, M.S., Wong, A.K.C., Wang, Y.: Cost-sensitive boosting for classification of imbalanced data. Pattern Recognit. 40, 3358–3378 (2007). https://doi.org/10.1016/J.PATCOG.2007.04.009. Pergamon

Download references

Acknowledgements

I would like to express my gratitude to T. Mandat, MD, PhD of Maria Sklodowska–Curie Memorial Oncology Center in Warsaw, for providing invaluable medical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad A. Ciecierski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciecierski, K.A. (2021). Computer Methods for Localization of the Subthalamic Nucleus During Deep Brain Stimulation Surgeries for Treatment of Parkinson Disease. In: Ras, Z.W., Wieczorkowska, A., Tsumoto, S. (eds) Recommender Systems for Medicine and Music. Studies in Computational Intelligence, vol 946. Springer, Cham. https://doi.org/10.1007/978-3-030-66450-3_3

Download citation

Publish with us

Policies and ethics