Skip to main content

Artificial Intelligence in Forensic Medicine

  • Reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Forensic medicine lies at the crossroads between medicine and justice, with a particular connection to criminal law. This field can be broken down into two major areas: clinical forensic medicine, which focuses on the living, and forensic pathology, which focuses on the dead. The use of data, and in particular artificial intelligence (AI), in this context faces two distinct challenges. First, there needs to be a discussion about the concept of evidence both upstream and downstream. A distinction must be made between scientific evidence, which is used to train algorithms and to support forensic reasoning in order to produce valid and robust information and legal evidence, which can include scientific data from investigations and interviews, as well as data produced by algorithms. The second challenge is individualization. One of the problems found in medicine, namely the application to a particular patient and situation of statistical knowledge established based on homogeneous groups whose study characteristics do not necessarily correspond to those of the patient, is only exacerbated in the field of forensic medicine. Not only must scientific knowledge be individualized, ensuring the validity of the algorithm to the specific case, without any learning or inclusion bias, but legal reasoning and the sentences handed down must be individualized too. AI can be used to support doctors’ decision-making in forensic medicine, and it can also be used to structure research necessary for the evolution of scientific knowledge in forensic medicine. To date, the AIs used to support decision-making remain fairly immature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Payne-James JJ. Forensic medicine, history of. In: Encyclopedia of forensic and legal medicine, vol. 2. Amsterdam: Elsevier; 2015. p. 539–67. https://doi.org/10.1016/B978-0-12-800034-2.00203-2.

    Chapter  Google Scholar 

  2. Tortora L, Meynen G, Bijlsma J, Tronci E, Ferracuti S. Neuroprediction and A.I. in forensic psychiatry and criminal justice: a neurolaw perspective. Front Psychol. 2020;11:220. https://doi.org/10.3389/fpsyg.2020.00220.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol. 2011;8:184–7.

    Article  Google Scholar 

  4. Godlee F. Evidence based medicine: flawed system but still the best we’ve got. BMJ. 2014;348:g440.

    Article  Google Scholar 

  5. Bujega G, Kumar A, Banerjee AK. Exclusion of elderly people from clinical research: a descriptive study of published reports. BMJ. 1997;315:1059.

    Article  Google Scholar 

  6. Lillie EO, Patay B, Diamant J, et al. The n-of-1 clinical trial: the ultimate strategy for individualizing medicine? Pers Med. 2011 Mar;8(2):161–73. https://doi.org/10.2217/pme.11.7.

    Article  Google Scholar 

  7. Latour B, Woolgar S. Laboratory life: the social construction of scientific facts. Los Angeles: Sage; 1979.

    Google Scholar 

  8. Chorev M, Shpigelman L, Bak P, Yaeli A, Michael E, Goldschmidt Y. A data-driven decision-support tool for population health policies. Stud Health Technol Inform. 2017;245:332–6.

    PubMed  Google Scholar 

  9. Anderson C. The end of theory: the data deluge makes the scientific method obsolete. Wired. 2008. https://www.wired.com/2008/06/pb-theory

  10. https://www.data.gouv.fr/fr/reuses/predictice/

  11. Pigliucci M. The end of theory in science? EMBO Rep. 2009;10(6):534. https://doi.org/10.1038/embor.2009.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Biedermann A, Bozza S, Taroni F. The decisionalization of individualization. Forensic Sci Int. 2016 Sep;266:29–38. https://doi.org/10.1016/j.forsciint.2016.04.029.

    Article  CAS  PubMed  Google Scholar 

  13. Biedermann A, Garbolino P, Taroni F. The subjectivist interpretation of probability and the problem of individualisation in forensic science. Sci Justice. 2013 Jun;53(2):192–200. https://doi.org/10.1016/j.scijus.2013.01.003.

    Article  PubMed  Google Scholar 

  14. Biedermann A, Taroni F, Garbolino P. Equal prior probabilities: can one do any better? Forensic Sci Int. 2007;172(2–3):85–93. https://doi.org/10.1016/j.forsciint.2006.12.008.

    Article  CAS  PubMed  Google Scholar 

  15. Lefèvre T, Chariot P, Chauvin P. Multivariate methods for the analysis of complex and big data in forensic sciences. Application to age estimation in living persons. Forensic Sci Int. 2016;266:581.e1–9. https://doi.org/10.1016/j.forsciint.2016.05.014.

    Article  Google Scholar 

  16. Pruvost MO, Boraud C, Chariot P. Skeletal age determination in adolescents involved in judicial procedures: from evidence-based principles to medical practice. J Med Ethics. 2010;36(2):71–4. https://doi.org/10.1136/jme.2009.031948.

    Article  PubMed  Google Scholar 

  17. Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, Reitsma JB, Collins GS. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014;11(10):e1001744. https://doi.org/10.1371/journal.pmed.1001744.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fernandes K, Cardoso JS, Astrup BS. A deep learning approach for the forensic evaluation of sexual assault. Pattern Anal Applic. 2018;21:629–40. https://doi.org/10.1007/s10044-018-0694-3.

    Article  Google Scholar 

  19. Lefèvre T, Lepresle A, Chariot P. Detangling complex relationships in forensic data: principles and use of causal networks and their application to clinical forensic science. Int J Legal Med. 2015;129(5):1163–72. https://doi.org/10.1007/s00414-015-1164-8.

    Article  PubMed  Google Scholar 

  20. https://orfead.org/en/orfead-forensic/

  21. Trousset V, Seyller M, Dang C, Chariot P, Lefèvre T. Prédire et dépister précocement un trouble de stress post-traumatique chez les victimes d’agressions sexuelles – potentiels de l’intelligence artificielle en consultation. 51ème congrès international de médecine légale. Dijon; 2019.

    Google Scholar 

  22. Mesejo P, Martos R, Ibáñez O, Novo J, Ortega M. A survey on artificial intelligence techniques for biomedical image analysis in skeleton-based forensic human identification. Appl Sci. 2020;10(14):4703. https://doi.org/10.3390/app10144703.

    Article  CAS  Google Scholar 

  23. Anderson NE, Harenski KA, Harenski CL, Koenigs MR, Decety J, Calhoun VD, et al. Machine learning of brain gray matter differentiates sex in a large forensic sample. Hum Brain Mapp. 2019;40:1496–506. https://doi.org/10.1002/hbm.24462.

    Article  PubMed  Google Scholar 

  24. Moore HE, Butcher JB, Day CR, Drijfhout FP. Adult fly age estimations using cuticular hydrocarbons and artificial neural networks in forensically important Calliphoridae species. For Sci Int. 2017;280:233–44. https://doi.org/10.1016/j.forsciint.2017.10.001.

    Article  CAS  Google Scholar 

  25. Cantürk I, Özilmaz L. A computational approach to estimate postmortem interval using opacity development of eye for human subjects. Comput Biol Med. 2018;98:93–9. https://doi.org/10.1016/j.compbiomed.2018.04.023.

    Article  PubMed  Google Scholar 

  26. Duarte F, Martins B, Pinto CS, Silva MJ. Deep neural models for ICD-10 coding of death certificates and autopsy reports in free-text. J Biomed Inform. 2018;80:64–77. https://doi.org/10.1016/j.jbi.2018.02.011.

    Article  PubMed  Google Scholar 

  27. Dirnhofer R, Jackowski C, Vock P, Potter K, Thali MJ. VIRTOPSY: minimally invasive, imaging-guided virtual autopsy. Radiographics. 2006;26(5):1305–33. https://doi.org/10.1148/rg.265065001.

    Article  PubMed  Google Scholar 

  28. Ebert LC, Heimer J, Schweitzer W, Sieberth T, Leipner A, Thali M, et al. Automatic detection of hemorrhagic pericardial effusion on PMCT using deep learning – a feasibility study. For Sci Med Pathol. 2017;13:426–31. https://doi.org/10.1007/s12024-017-9906-1.

    Article  Google Scholar 

  29. Zhou Y, Zhang J, Huang J, Deng K, Zhang J, Qin Z, et al. Digital whole-slide image analysis for automated diatom test in forensic cases of drowning using a convolutional neural network algorithm. For Sci Int. 2019;302:109922. https://doi.org/10.1016/j.forsciint.2019.109922.

    Article  Google Scholar 

  30. Linthicum KP, Schafer KM, Ribeiro JD. Machine learning in suicide science: applications and ethics. Behav Sci Law. 2019;37:214–22. https://doi.org/10.1002/bsl.2392.

    Article  PubMed  Google Scholar 

  31. Monash University. https://www.monash.edu/news/articles/monash-designs-technology-to-map-bullet-trajectory. (2019). Accessed 25 Nov 2020.

  32. Neumann C, Evett IW, Skerrett J. Quantifying the weight of evidence from a fingerprint comparison: a new paradigm. J R Stat Soc Ser A. 2012;175:371–416.

    Article  Google Scholar 

  33. Taroni F, Biedermann A, Vuille J, Morling N. Whose DNA is this? How relevant a question? (a note for forensic scientists). Forensic Sci Int Genet. 2013 Jul;7(4):467–70. https://doi.org/10.1016/j.fsigen.2013.03.012.

    Article  PubMed  Google Scholar 

  34. https://shuftipro.com/blog/fighting-identity-fraud-with-ai-enabled-id-document-verification

  35. Lefèvre T. Big data in forensic science and medicine. J Forensic Legal Med. 2018;57:1–6. https://doi.org/10.1016/j.jflm.2017.08.001.

    Article  Google Scholar 

  36. Guez S, Laugier V, Saas C, Lefèvre T. L’IA, le légiste et le magistrat: traitement médicolégal des violences interpersonnelles. In: Julia G, editor. Sciences et sens de l’intelligence artificielle, Thèmes et commentaires. Dalloz; 2020.

    Google Scholar 

  37. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447–53. https://doi.org/10.1126/science.aax2342.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lefèvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lefèvre, T. (2022). Artificial Intelligence in Forensic Medicine. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-64573-1_220

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64573-1_220

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64572-4

  • Online ISBN: 978-3-030-64573-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics