Skip to main content

Bioactive Phytochemicals from Castor (Ricinus communis Linneo) Seed Oil Processing By-products

  • Living reference work entry
  • First Online:
Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 79 Accesses

Abstract

Castor (Ricinus communis Linneo) belongs to the plant family of Euphorbiaceae and is a crop intensively cultivated to produce oil from its seeds. There is a high demand of oil on the international market since oil extraction is economically favorable and oil has versatile applications in industry. Seeds are commonly used for the extraction of oil, thus, a large number of by-products are obtained from them. The major by-products originating from castor (Ricinus communis Linneo) seed oil processing are oil cake and plant residues such as husks, leaves, roots, and stems, after seeds have been harvested and processed. Phytochemicals extracted from the different by-products have been documented. Valorization of the by-products obtained from castor seed oil processing makes provision for more economic opportunities and benefits. Furthermore, to ensure environmentally friendly production of seed oils, by-product valorization becomes a critical step. This chapter summarizes the reported composition of phytochemicals in castor seed oil processing by-products, their bioactivities, potential food and non-food applications, and potential valorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AgNPs:

Silver Nanoparticles

COXB4:

Coxsackievirus B4

HAV:

Hepatitis A Virus

HSV1:

Herpes Simplex Virus Type 1

MAE:

Microwave-Assisted Extraction

RCA:

Ricinus communis Agglutinin

RIP :

Ribosome Inactivating Proteins

RTB:

Ricin Toxin Binding Subunit B (RTB)

SR-aGVHD:

Steroid-Refractory Acute Graft-Versus-Host Disease

TFC :

Total Flavonoid Content

TPC:

Total Phenolic Content

Type II RIP:

Type II Group of Ribosome Inactivating Proteins

VEGF:

Vascular Endothelial Growth Factor

VOCs :

Volatile Organic Compounds

References

  1. Patel VR, Dumancas GG, Kasi Viswanath LC, Maples R, Subong BJ (2016) Castor oil: properties, uses, and optimization of processing parameters in commercial production. Lipid Insights 9:1–12. https://doi.org/10.4137/LPI.S40233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rahimi V, Shafiei M, Karimi K (2020) Techno-economic study of castor oil crop biorefinery: production of biodiesel without fossil-based methanol and lignoethanol improved by alkali pretreatment. Agronomy 10:1538. https://doi.org/10.3390/agronomy10101538

    Article  CAS  Google Scholar 

  3. Alugah CI, Ibraheem O (2014) Whole plant screenings for flavonoids and tannins contents in Castor plant (Ricinus communis L.) and evaluation of their biological activities. Int J Herb Med 2(2):68–76

    Google Scholar 

  4. Carrino L, Visconti D, Fiorentino N, Fagnano M (2020) Biofuel production with Castor bean: a win–win strategy for marginal land. Agronomy 10:1690. https://doi.org/10.3390/agronomy10111690

    Article  CAS  Google Scholar 

  5. Grand View Research (2019) Castor oil & derivatives market size, share & trends analysis report by product (Sebacic Acid, 12 HSA, Ricinoleic acid, castor wax, undecylenic acid), by application, by region, and segment forecasts, 2019–2025. http://www.grandviewresearch.com. Accessed 30 Apr 2021

  6. Rodríguez-Yáñez JE (2019) Parameters for use of waste castor-oil seed (Ricinus communis) as biomass. Int J Renew Energy Biofuels:Article ID 529157. https://doi.org/10.5171/2019.529157

  7. Melo WC, da Silva DB, Pereira N Jr, Anna LMMS, dos Santos AS (2008) Produção de ethanol a partir de torta de mamona (Ricinus communis L.) e avaliação da letalidade da torta hidrolisadapara camundongos. Quim Nova 31:1104–1106

    Article  CAS  Google Scholar 

  8. Naik SN, Saxena DK, Dole BR, Khare SK (2018) Potential and perspective of castor biorefinery. In: Bhaskar T, Pandey A, Mohan SV, Lee D-J, Khanal SK (eds) Waste biorefinery. Elsevier. https://doi.org/10.1016/B978-0-444-63992-9.00021-5

    Chapter  Google Scholar 

  9. Abada E, Al-Fifi Z, Osman M (2019) Bioethanol production with carboxymethylcellulase of Pseudomonas poae using castor bean (Ricinus communis L.) cake. Saudi J Biol Sci 26:866–871. https://doi.org/10.1016/j.sjbs.2018.02.021

    Article  CAS  PubMed  Google Scholar 

  10. Kalinke C, Mangrich AS, Marcolino-Junior LH, Bergamini MF (2016) Biochar prepared from castor oil cake at different temperatures: Avoltammetric study applied for Pb2+, Cd2+ and Cu2+ ions preconcentration. J Hazard Mater 318:526–532. https://doi.org/10.1016/j.jhazmat.2016.07.041

    Article  CAS  PubMed  Google Scholar 

  11. Akande TO, Odunsi AA, Akinfala EO (2016) A review of nutritional and toxicological implications of castor bean (Ricinus communis L.) meal in animal feeding systems. J Anim Physiol Anim Nutr 100:201–210. https://doi.org/10.1111/jpn.12360

    Article  CAS  Google Scholar 

  12. Borja MS, Oliveira RL, Silva TM, Bezerra LR, Nascimento NG, Borja ADP (2017) Effectiveness of calcium oxide and autoclaving for the detoxification of castor seed meal in finishing diets for lambs. Anim Feed Sci Technol 231:76–88. https://doi.org/10.1016/j.anifeedsci.2017.07.001

    Article  CAS  Google Scholar 

  13. Singh R, Geetanjali (2015) Phytochemical and pharmacological investigations of Ricinus communis Linn. Algerian J Nat Prod 3(1):120–129

    Google Scholar 

  14. Marwat SK, Rehman F, Khan EA, Baloch MS, Sadiq M, Ullah I, Javaria S, Shaheen S (2017) Review -Ricinus communis- Ethnomedicinal uses and pharmacological activities. Pak J Pharm Sci 30(5):1815–1827

    PubMed  Google Scholar 

  15. Abdul WM, Hajrah NH, Sabir JSM, Al-Garni SM, Sabir MJ, Kabli SA et al (2018) Therapeutic role of Ricinus communis L. and its bioactive compounds in disease prevention and treatment. Asian Pac. J Trop Med 11(3):177–185. https://doi.org/10.4103/1995-7645.228431

    Article  CAS  Google Scholar 

  16. Xin-long J (2010) Extraction and determination of the total flavones from leaves and flowers of Castor. China Brewing. https://en.cnki.com.cn/Article_en/CJFDTotal-ZNGZ201001048.htm

  17. Jiang Y, Jiang X, Cai C (2014) Optimum process for extraction of total flavonoids from castor leaves by orthogonal test. Adv Mater Res 989-994:1029–1032. https://doi.org/10.4028/www.scientific.net/AMR.989-994.1029

    Article  CAS  Google Scholar 

  18. Krzyzowska M, Tomaszewska E, Ranoszek-Soliwoda K, Bien K, Orlowski P, Celichowski G, Grobelny J (2017) Tannic acid modification of metal nanoparticles: possibility for new antiviral applications. In: Andronescu E, Grumezescu AM (eds) Micro and nano technologies, nanostructures for oral medicine. Elsevier. https://doi.org/10.1016/B978-0-323-47720-8.00013-4

    Chapter  Google Scholar 

  19. Waris M, Nasir S, Abbas S, d Azeem M, Ahmad B, Khan NA, Hussain B, Al-Ghanim KA, Al-Misned F, Mulahim N, Mahboo S (2020) Evaluation of larvicidal efficacy of Ricinus communis (Castor) and synthesized green silver nanoparticles against Aedes aegypti L. Saudi J Biol Sci 27:2403–2409. https://doi.org/10.1016/j.sjbs.2020.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Solvey (2021) Anisole. Retrieved from: https://www.solvay.com/en/product/anisole

  21. NagoorMeeran MF, Javed H, Al Taee H, Azimullah S, Ojha S (2017) Pharmacological properties and molecular mechanisms of thymol: prospects for its therapeutic potential and pharmaceutical development. Front Pharmacol 8:380. https://doi.org/10.3389/fphar.2017.00380

    Article  CAS  Google Scholar 

  22. Badhani B, Sharma N, Kakkar R (2015) Gallic acid: a versatile antioxidant with promising therapeutic and industrial applications. RSC Adv 5:27540–27557. https://doi.org/10.1039/C5RA01911G

    Article  CAS  Google Scholar 

  23. The Human Metabolome Database (HMDB) (2021). Retrieved from https://hmdb.ca/metabolites/HMDB0033136

  24. Juzeniene A, Grigalavicius M, Ma LW, Juraleviciute M (2016) Folic acid and its photoproducts, 6-formylpterin and pterin-6-carboxylic acid, as generators of reactive oxygen species in skin cells during UVA exposure. J Photochem Photobiol B 155:116–121. https://doi.org/10.1016/j.jphotobiol.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  25. MokniR E, Hammami S, Dall’Acqua S, Peron G, Faidi K, Braude JP, Sebei H, El Aouni MH (2016) Chemical composition, antioxidant and cytotoxic activities of essential oil of the inflorescence of Anacamptiscoriophora subsp. fragrans (Orchidaceae) from Tunisia. Nat Prod Commun 11(6):857–860

    Google Scholar 

  26. Al-Rubaye AF, Kadhim MJ, Hameed IH (2017) Determination of bioactive chemical composition of methanolic leaves extract of Sinapis arvensis using GC-MS technique. IJTPR 9(2):163–178

    Article  Google Scholar 

  27. Guo X, Gu D, Wang M, Huang Y, Li H, DongY TJ, Wang Y, Yang Y (2017) Characterization Gracilarialemaneiformis of active compounds from inhibiting the protein tyrosine phosphatase 1B activity. Food Funct 3271–3275. https://doi.org/10.1039/c7fo00376e

  28. DrugBank Online (2021) Docosanol. Retrieved from: https://go.drugbank.com/drugs/DB00632

  29. Santos PM, Batista DLJ, Ribeiro LAF, Boffo EF, de Cerqueira MD, Martins D, de Castro RD, de Souza-Neta LC, Pinto E, Zambotti-Villela L et al (2018) Identification of antioxidant and antimicrobial compounds from the oilseed crop Ricinus communis using a multiplatform metabolite profiling approach. Ind Crop Prod 124:834–844

    Article  CAS  Google Scholar 

  30. Taofiq O, González-Paramás AM, Barreiro MF, Ferreira IC (2017) Hydroxycinnamic acids and their derivatives: cosmeceutical significance, challenges and future perspectives, a review. Molecules 22(2):281. https://doi.org/10.3390/molecules22020281

    Article  CAS  PubMed Central  Google Scholar 

  31. Kwak JY, Park S, Seok JK, Liu KH, Boo YC (2015) Ascorbyl coumarates as multifunctional cosmeceutical agents that inhibit melanogenesis and enhance collagen synthesis. Arch Dermatol Res 307:635–643. https://doi.org/10.1007/s00403-015-1583-x

    Article  CAS  PubMed  Google Scholar 

  32. Pei K, Ou J, Huang J, Ou S (2016) p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agric 96:2952–2962. https://doi.org/10.1002/jsfa.7578

    Article  CAS  PubMed  Google Scholar 

  33. Islam Md S, Matsuki N, Nagasaka R, Ohara K, Hosoya T, Ozaki H, Ushio H, Hori M (2014) Rice bran antioxidants in health and wellness. In: Watson RR, Preedy VR, Zibadi S (eds) Wheat and Rice in disease prevention and health. Academic. https://doi.org/10.1016/B978-0-12-401716-0.00034-9

    Chapter  Google Scholar 

  34. Kumar S, Prahalathan P, Raja B (2011) Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in L-NAME-induced hypertensive rats: a dose-dependence study. Redox Rep 16(5):208–215. https://doi.org/10.1179/1351000211Y.0000000009

    Article  CAS  PubMed  Google Scholar 

  35. Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. Int Scholar Res Notic 2014:Article ID 952943. https://doi.org/10.1155/2014/952943

    Article  Google Scholar 

  36. Mbaveng AT, Zhao Q, Kuete V (2014) Harmful and protective effects of phenolic compounds from African medicinal plants. In: Kuete V (ed) Toxicological survey of African medicinal plants. Elsevier. https://doi.org/10.1016/B978-0-12-800018-2.00020-0

    Chapter  Google Scholar 

  37. United States Biological (2021) 007996 N-Demethyl Ricinine-13C3. Retrieved from: https://www.usbio.net/biochemicals/007996/NDemethyl-Ricinine13C3

  38. Vermeer CP, Nastold P, Jetter R (2003) Homologous very-long-chain 1,3-alkanediols and 3-hydroxyaldehydes in leaf cuticular waxes of Ricinus communis L. Phytochemistry 62(3):433–438

    Article  CAS  PubMed  Google Scholar 

  39. Santos FA, Frota JT, Arruda BR et al (2012) Antihyperglycemic and hypolipidemic effects of α, β-amyrin, a triterpenoid mixture from Protium heptaphyllum in mice. Lipids Health Dis 11:98. https://doi.org/10.1186/1476-511X-11-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh PP, Chauhan ASMS (2009) Activity guided isolation of antioxidants from the leaves of Ricinus communis L. Food Chem 114:1069–1072. https://doi.org/10.1016/j.foodchem.2008.10.020

    Article  CAS  Google Scholar 

  41. Ganeshpurkar A, Saluja AK (2017) The pharmacological potential of rutin. Saudi Pharm J 25(2):149–164. https://doi.org/10.1016/j.jsps.2016.04.025

    Article  PubMed  Google Scholar 

  42. Abedi F, Razavi BM, Hosseinzadeh H (2020) A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytother Res 34:729–741. https://doi.org/10.1002/ptr.6573

    Article  CAS  PubMed  Google Scholar 

  43. Salimi A, Pourahmad J (2018) Role of natural compounds in prevention and treatment of chronic lymphocytic leukemia. In: Watson RR, Preedy VR, Zibadi S (eds) Polyphenols: prevention and treatment of human disease, 2nd edn. Academic. https://doi.org/10.1016/B978-0-12-813008-7.00016-3

    Chapter  Google Scholar 

  44. Bernatova I (2018) Biological activities of (−)-epicatechin and (−)-epicatechin-containing foods: focus on cardiovascular and neuropsychological health. Biotechnol Adv 36(3):666–681. https://doi.org/10.1016/j.biotechadv.2018.01.009

    Article  CAS  PubMed  Google Scholar 

  45. Prakash M, Basavaraj BV, Murthy KNC (2019) Biological functions of epicatechin: plant cell to human cell health. J Funct Foods 52. https://doi.org/10.1016/j.jff.2018.10.021

  46. Lian Q, Nie Y, Zhang X, Tan B, Cao H, Chen W, Gao W, Chen J, Liang Z, Lai H, Huang S, Xu Y, Jiang W, Huang P (2016) Effects of grape seed proanthocyanidin on Alzheimer’s disease in vitro and in vivo. Exp Ther Med 12(3):1681–1692. https://doi.org/10.3892/etm.2016.3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ruan W, Shen S, Xu Y, Ran N, Zhang H (2021) Mechanistic insights into procyanidins as therapies for Alzheimer’s disease: a review. J Funct Foods 86:104683. https://doi.org/10.1016/j.jff.2021.104683

    Article  CAS  Google Scholar 

  48. Thomas P, Dong J (2021) (-)-Epicatechin acts as a potent agonist of the membrane androgen receptor, ZIP9 (SLC39A9), to promote apoptosis of breast and prostate cancer cells. J Steroid Biochem Mol Biol 211:105906. https://doi.org/10.1016/j.jsbmb.2021.105906

    Article  CAS  PubMed  Google Scholar 

  49. Rampadarath S, Puchooa D, Ranghoo-Sanmukhiya VM (2014) A comparison of polyphenolic content, antioxidant activity and insecticidal properties of Jatropha species and wild Ricinus communis L. found in Mauritius. Asian Pac J Trop Med 7S1:384–390. https://doi.org/10.1016/S1995-7645(14)60263-7

    Article  CAS  Google Scholar 

  50. Hussein AO, Hameed IH, Huda J, Muhanned AK (2015) Determination of alkaloid compounds of Ricinus communis by using gas chromatography-mass spectroscopy (GC-MS). J Med Plant Res 9(10):349–359. https://doi.org/10.5897/JMPR2015.5750

    Article  CAS  Google Scholar 

  51. Soni N, Dhiman RC (2017) Phytochemical, anti-oxidant, larvicidal, and antimicrobial activities of castor (Ricinus communis) synthesized silver nanoparticles. Chin Herb Med 9(3). https://doi.org/10.1016/S1674-6384(17)60106-0

  52. Nebo L, Varela RM, Fernandes JB, Palma M (2019) Microwave-assisted extraction of ricinine from Ricinus communis leaves. Antioxidants 8(10):438. https://doi.org/10.3390/antiox8100438

    Article  CAS  PubMed Central  Google Scholar 

  53. Leite AC, Cabral EC, Santos DAP, Fernandes JB, Vieira PC, Silva MF (2005) Isolation of the alkaloid ricinine from the leaves of Ricinus communis (Euphorbiaceae) through counter-current chromatography. Quim Nova 28:983–985

    Article  CAS  Google Scholar 

  54. Srivastava P, Jyotshna Gupta N, Maurya AK, Shanker K (2014) New anti-inflammatory triterpene from the root of Ricinus communis. Nat Prod Res 28:306–311

    Article  CAS  PubMed  Google Scholar 

  55. Kalogiannis KG, Stefanidis SD, Michailof CM, Lappas AA (2016) Castor bean cake residues upgrading towards high added value products via fast catalytic pyrolysis. Biomass Bioenergy 95:405–415. https://doi.org/10.1016/j.biombioe.2016.07.001

    Article  CAS  Google Scholar 

  56. Srivastava AK, Srivastava A, Mathur RM, Prakash R, Agrawal S (2017) Biochemical analysis of castor cake. Int J Eng Sci Res Technol 6(6):84–93. https://doi.org/10.5281/zenodo.802836

    Article  CAS  Google Scholar 

  57. Ferreira LM, de Melo RR, Pimenta AS, de Azevedo TKB, de Souza CB (2020) Adsorption performance of activated charcoal from castor seed cake prepared by chemical activation with phosphoric acid. Biomass Converv Bioref. https://doi.org/10.1007/s13399-020-00660-x

  58. Yashim SM, Abdu SB, Hassan MR (2007) Chemical composition of three varieties of castor seed for livestock feeding. Trop J Anim Sci 1:495–498

    Google Scholar 

  59. Akande TO, Odunsi AA, Olabode OS, Ojediran TK (2012) Physical and nutrient characterisation of raw and processed castor (Ricinus communis L.) seeds in Nigeria. World J Agric Sci 8:89–95

    CAS  Google Scholar 

  60. Jayant M, Sahu NP, Deo AD, Gupta S, Rajendran KV, Garg CK, Meena DK, Wagde MS (2021) Effective valorization of bio-processed castor kernel meal based fish feed supplements concomitant with oil extraction processing industry: a prolific way towards greening of landscaping/environment. Environ Technol Innov 21:101320. https://doi.org/10.1016/j.eti.2020.101320

    Article  CAS  Google Scholar 

  61. Clautilde M, Lucien T, Eric N, Nehemie DW, Nicolas NY (2016) Physico-chemical properties of cake and oil from three castor bean accessions (Ricinus communis l) grown in the field in two agroecological zones of northern Cameroon. Int J Res Stud Biosci 4(5):6–15

    Google Scholar 

  62. Bernhoft A (2010) Bioactive compounds in plants-benefits and risks for man and animals. In: Proceedings from a symposium held at The Norwegian Academy of Science and Letters, Oslo, 13–14 November 2008. The Norwegian Academy of Science and Letters, Norway. http://www.dnva.no/geomed

  63. Coppock RW, Dziwenka M (2015) Potential agents that can cause contamination of animal feedstuffs and terror. In: Gupta RC (ed) Handbook of toxicology of chemical warfare agents, 2nd edn. Academic. https://doi.org/10.1016/B978-0-12-800159-2.00053-1

    Chapter  Google Scholar 

  64. Yeboah A, Ying S, Lu J, Xie Y, Amoanimaa-Dede H, Boateng KGA, Chen M, Yin X (2020) Castor oil (Ricinus communis): a review on the chemical composition and physicochemical properties. Food Sci Technol 40. https://doi.org/10.1590/fst.19620

  65. Wright HT, Robertus JD (1987) The intersubunit disulfide bridge of ricin is essential for cytotoxicity. Arch Biochem Biophys 256(1):280–284. https://doi.org/10.1016/0003-9861(87)90447-4

    Article  CAS  PubMed  Google Scholar 

  66. Dorsey R, Emmett G, Salem H (2015) Ricin. In: Gupta RC (ed) Handbook of toxicology of chemical warfare agents, 2nd edn. Academic. https://doi.org/10.1016/B978-0-12-800159-2.00027-0

    Chapter  Google Scholar 

  67. Mei X, Chen J, Wang J, Zhu J (2019) Immunotoxins: targeted toxin delivery for cancer therapy. Pharm Fronts 1:e33–e45. https://doi.org/10.1055/s-0039-1700507

    Article  Google Scholar 

  68. Severino LS, Auld DL, Baldanzi M, Cândido MJ, Chen G, Crosby W, Tan D, He X, Lakshmamma P, Lavanya C, Machado OLT, Mielke T, Milani M, Miller TD, Morris JB, Morse SA, Navas AA, Soares DJ, Sofiatti V, Wang ML, Zanotto MD, Zieler H (2012) A review on the challenges for increased production of castor. Agron J 104(4):853–880. https://doi.org/10.2134/agronj2011.0210

    Article  Google Scholar 

  69. Islam T, Bakshi H, Sam S, Sharma E, Hameed B, Rathore B, Gupta A, Ahirwar S, Sharma M (2010) Assessment of antibacterial potential of leaves of Ricinus communis against pathogenic and dermatophytic bacteria. Int J Pharm Res Dev 1(12):1–7

    Google Scholar 

  70. Naz R, Bano A (2012) Antimicrobial potential of Ricinus communis leaf extracts in different solvents against pathogenic bacterial and fungal strains. Asian Pac J Trop Biomed 2:944–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jeyaseelan EC, Jashothan PTJ (2012) In vitro control of Staphylococcus aureus (NCTC 6571) and Escherichia coli (ATCC 25922) by Ricinus communis L. Asian Pac J Trop Biomed 2(10):717–721

    Article  PubMed  PubMed Central  Google Scholar 

  72. Abd-Ulgadir KS, Suliman SI, Zakria IA, Hassan NEA (2015) Antimicrobial potential of methanolic extracts Hibiscus sabdariffa and Ricinus communis. Adv Med Plant Res 3:18–22

    CAS  Google Scholar 

  73. Shukla B, Visen PKS, Patnaik GK, Kapoor NK, Dhawan BN (1992) Hepatoprotective effect of an active constituent isolated from the leaves of Ricinus communis Linn. Drug Dev Res 26(2):183–193

    Article  CAS  Google Scholar 

  74. Padmapriya B, Leema MCE, Kumar AP, Muhammad Ilyas MH, Rajeswari T (2012) Antihepatotoxicity of Ricinus communis (L.) against ketoconazole induced hepatic damage. Adv Biol Res 6:30–36. https://doi.org/10.5829/idosi.abr.2012.6.1.5673

    Article  Google Scholar 

  75. Taur DJ, Waghmare MG, Bandal RS, Patil RY (2011) Antinociceptive activity of Ricinus communis L. leaves. Asian Pac J Trop Biomed 1(2):139–141. https://doi.org/10.1016/S2221-1691(11)60012-9

    Article  PubMed  PubMed Central  Google Scholar 

  76. Darmanin S, Wismayer PS, Podesta MTC, Micallef MJ, Buhagiar JA (2009) An extract from Ricinus communis L. leaves possesses cytotoxic properties and induces apoptosis in SK-MEL-28 human melanoma cells. Nat Prod Res 23:561–571

    Article  CAS  PubMed  Google Scholar 

  77. Ravishankar K, Indira K, Vijay Bhaskar R (2012) In vivo hepatoprotective activity of Ricinus communis Linn leaf extract against CCl4 induced hepatic damage in albino rats. Int J Biol Pharm Res 3(3):444–449

    Google Scholar 

  78. Prakash E, Gupta DK (2014) In vitro study of extracts of Ricinus communis Linn on human cancer cell lines. J Med Sci Pub Health 2(1):15–20

    Google Scholar 

  79. Shah TI, Sharma E, Shah GA (2015) Inhibitory property of aqueous extract of Ricinus communis leaves on proliferation of melanoma treated against A375 cell lines. World J Pharm Sci 3(4):758–761

    Google Scholar 

  80. Ghosh S, Tiwari SS, Srivastava S, Sharma AK, Kumar S, Ray DD et al (2013) Acaricidal properties of Ricinus communis leaf extracts against organophosphate and pyrethroids resistant Rhipicephalus (Boophilus) microplus. Vet Parasitol 192(1–3):259–267

    Article  PubMed  Google Scholar 

  81. Matthew OO, Olusola L, Matthew OA (2012) Preliminary study of hypoglycaemic and hypolipidemic activity of aqueous root extract of Ricinus communis in alloxan-induced diabetic rats. J Phys Pharm Adv 2(10):354–359

    Google Scholar 

  82. Saini AK, Goyal R, Gauttam VK, Kalia AN (2010) Evaluation of anti-inflammatory potential of Ricinus communis Linn leaves extracts and its flavonoids content in Wistar rats. J Chem Pharm Res 2(5):690–695

    Google Scholar 

  83. Nemudzivhadi V, Masoko P (2014) In vitro assessment of cytotoxicity, antioxidant and anti-inflammatory activities of Ricinus communis (Euphorbiaceae) leaf extracts. Evid Based Complement Alternat Med 2014:e625961

    Article  Google Scholar 

  84. Ferraz AC, Angelucci MEM, Costa MLD, Batista IR, Oliveira BHDE, Cunha CDA (1999) Pharmacological evaluation of ricinine, a central nervous system stimulant isolated from Ricinus communis. Plant Physiol 63(3):367–375

    CAS  Google Scholar 

  85. Almeida RN, Navarro DS, Barbosa-Filho JM (2001) Plants with central analgesic activity. Phytomedicine 8(4):310–322

    Article  CAS  PubMed  Google Scholar 

  86. Sibi G, Gurmeetkaur DG, Dhananjaya K, Ravikumar KR, Mallesha H (2012) Anti-dandruff activity of Ricinus communis L. leaf extracts. Int J Curr Pharm Res 4(3):74–76

    Google Scholar 

  87. Kumar A, Singh V, Ghosh S (2011) An experimental evaluation of in vitro immunomodulatory activity of isolated compound of Ricinus communis on human neutrophils. Int J Green Pharm 5:201–204

    Article  Google Scholar 

  88. Elkousy RH, Said ZNA, Abd El-Baseer MA, Abu El Wafa SA (2021) Antiviral activity of castor oil plant (Ricinus communis) leaf extracts. J Ethnopharmacol 271:113878. https://doi.org/10.1016/j.jep.2021.113878

    Article  CAS  PubMed  Google Scholar 

  89. Shafiq N, Arshad U, Yaqoob N, Khan J, Khan A, Saleem K, Rashid M, Rafiq N, Ahmad R, Javaid I, Noreen S, Bilal M (2021) Structure-based experimental and theoretical analysis of Ricinus communis for their HepG2 human carcinoma cell line inhibitors. Process Biochem 104:152–160. https://doi.org/10.1016/j.procbio.2021.03.012

    Article  CAS  Google Scholar 

  90. Gülçin I (2006) Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 217(2–3):213–220. https://doi.org/10.1016/j.tox.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  91. Wang X, Li X, Chen D (2011) Evaluation of antioxidant activity of isoferulic acid in vitro. Nat Prod Commun 6(9):1285–1288

    CAS  PubMed  Google Scholar 

  92. Noleto Dias C, Nunes TAL, Sousa JMS, Costa LH, Rodrigues RRL, Araújo AJ, Marinho Filho JDB, da Silva MV, Oliveira MR, Carvalho FAA, Rodrigues KADF (2020) Methyl gallate: selective antileishmanial activity correlates with host-cell directed effects. Chem Biol Interact 1(320):109026. https://doi.org/10.1016/j.cbi.2020.109026

    Article  CAS  Google Scholar 

  93. Suurbaar J, Mosobil R, Donkor AM (2017) Antibacterial and antifungal activities and phytochemical profile of leaf extract from different extractants of Ricinus communis against selected pathogens. BMC Res Notes 10:660. https://doi.org/10.1186/s13104-017-3001-2

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bigi MA, Torkomian LV, de Groote TCS, Hebling MJ, Bueno OC, Pagnocca FC, Fernandes JB, Vieira PC, da Silva MF (2004) Activity of Ricinus communis (Euphorbiaceae) and ricinine against the leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae) and the symbiotic fungus Leucoagaricus gongylophorus. Pest Manag Sci 60:933–938

    Article  CAS  PubMed  Google Scholar 

  95. Taur DJ, Patil RY (2011) Antiasthmatic activity of Ricinus communis L. roots. Asian Pac J Trop Biomed 1:13–16

    Article  Google Scholar 

  96. Ilavarasan R, Mallika M, Venkataraman S (2006) Anti-inflammatory and free radical scavenging activity of Ricinus communis root extract. J Ethnopharmacol 103:478–480

    Article  PubMed  Google Scholar 

  97. Shokeen P, Anand PY, Murali K, Tandon V (2008) Antidiabetic activity of 50% ethanolic extract of Ricinus communis and its purified fractions. Food Chem Toxicol 46:3458–3466

    Article  CAS  PubMed  Google Scholar 

  98. Verma SK, Yousuf S, Singh SK, Prasad GBKS, Dua VK (2011) Antimicrobial potential of roots of Riccinus communis against pathogenic microorganisms. Int J Pharm Biosci 2:545–548

    Google Scholar 

  99. Majumder S, Ghosh A, Bhattacharya M (2020) Natural anti-inflammatory terpenoids in Camellia japonica leaf and probable biosynthesis pathways of the metabolome. Bull Natl Res Centre 44:141. https://doi.org/10.1186/s42269-020-00397-7

    Article  Google Scholar 

  100. Siddique HR, Saleem M (2011) Beneficial health effects of lupeol triterpene: a review of preclinical studies. Life Sci 88(7–8):285–293. https://doi.org/10.1016/j.lfs.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  101. Kumar SR, Gupta MK, Deepti K, Anshul S, Parul S (2010) In-vitro antioxidant activity of the successive extracts of Ricinus communis stems. IJPSR 12:100–103. https://doi.org/10.13040/IJPSR.0975-8232.1(8-S).100-03

    Article  Google Scholar 

  102. Patel K, Patel DK (2016) Medicinal significance, pharmacological activities, and analytical aspects of ricinine: a concise report. J Coast Life Med 4(8):663–667. https://doi.org/10.12980/jclm.4.2016J6-96

    Article  CAS  Google Scholar 

  103. El-Naggar MH, Elgaml A, Abdel Bar FM, Badria FA (2019) Antimicrobial and antiquorum-sensing activity of Ricinus communis extracts and ricinine derivatives. Nat Prod Res 33:1556–1562

    Article  CAS  PubMed  Google Scholar 

  104. Patel S, Alam A, Pant R, Chattopadhyay S (2019) Wnt signaling and its significance within the tumor microenvironment: novel therapeutic insights. Front Immunol 10:2872. https://doi.org/10.3389/fimmu.2019.02872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ohishi K, Toume K, Arai MA, Sadhu SK, Ahmed F, Mizoguchi T et al (2014) Ricinine: a pyridone alkaloid from Ricinus communis that activates the Wnt signaling pathway through casein kinase 1α. Bioorg Med Chem 22(17):4597–4601

    Article  CAS  PubMed  Google Scholar 

  106. Tripathi BK, Srivastava S, Rastogi R, Raina D, Ram VJ, Srivastava AK (2003) Hepatoprotection by 3-bromo-6-(4-chlorophenyl)-4-methylthio-2H-pyran-2-one against experimentally induced liver injury in rats. Acta Pharma 53(2):91–100

    CAS  Google Scholar 

  107. Polito L, Djemil A, Bortolotti M (2016) Plant toxin-based immunotoxins for cancer therapy: a short overview. Biomedicine 4(2):12. https://doi.org/10.3390/biomedicines4020012

    Article  CAS  Google Scholar 

  108. Naik MK, Patel M, Jaiswal S, Mohanty S, Naik SN (2015) Process optimization for castor based monoglycerides preparation and purification by molecular distillation. ASP-15-second symposium on advances in sustainable polymers, IIT, Guwahati

    Google Scholar 

  109. Kim J-S, Jun S-Y, Kim Y-S (2020) Critical issues in the development of immunotoxins for anticancer, therapy. J Pharm Sci 109:104–115. https://doi.org/10.1016/j.xphs.2019.10.037

    Article  CAS  PubMed  Google Scholar 

  110. Groth C, van Groningen LFJ, Matos TR et al (2019) Phase I/II trial of a combination of anti-CD3/CD7 immunotoxins for steroid-refractory acute graft-versus-host disease. Biol Blood Marrow Transplant 25(4):712–719

    Article  CAS  PubMed  Google Scholar 

  111. RoonJA V, van Vuuren AJ, Wijngaarden S, Jacobs KM, Bijlsma JW, Lafeber FP, Thepen T, van de Winkel JG (2003) Selective elimination of synovial inflammatory macrophages in rheumatoid arthritis by an Fcgamma receptor I-directed immunotoxin. Arthritis Rheum 48:1229–1238. https://doi.org/10.1002/art.10940

    Article  CAS  Google Scholar 

  112. Van Vuuren AJ, van Roon JA, Walraven V, Stuij I, Harmsen MC, McLaughlin PM, van de Winkel JG, Thepen T (2006) CD64-directed immunotoxin inhibits arthritis in a novel CD64 transgenic rat model. J Immunol 176:5833–5838

    Article  PubMed  Google Scholar 

  113. Słomińska-Wojewódzka M, Sandvig K (2013) Ricin and ricin-containing immunotoxins: insights into intracellular transport and mechanism of action in vitro. Antibodies 2:236–269. https://doi.org/10.3390/antib2020236

    Article  CAS  Google Scholar 

  114. Liu W, Xu N, Yuan H, Li S, Liu L, Pu Z, Wan J, Wang H, Chang Y, Li R (2013) Immunomodulatory activity of recombinant ricin toxin binding subunit B (RTB). Int J Mol Sci 14(6):12401–12410. https://doi.org/10.3390/ijms140612401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. You WK, Kasman I, Hu-Lowe DD, McDonald DM (2010). Ricinus communis agglutinin I leads to rapid down-regulation of VEGFR-2 and endothelial cell apoptosis in tumor blood vessels. Am J Pathol 176(4):1927–1940. https://doi.org/10.2353/ajpath.2010.090561

  116. Pedroso LA, Campos VP, Pedroso MP, Barros AF, Freire ES, Resende FM (2019) Volatile organic compounds produced by castor bean cake incorporated into the soil exhibit toxic activity against Meloidogyne incognita. Pest Manag Sci 75:476–483. https://doi.org/10.1002/ps.5142

    Article  CAS  PubMed  Google Scholar 

  117. Oso AO, Olayemi WA, Bamgbose AM, Fowoyo OF (2011) Utilization of fermented castor oil seed (Ricinus communis L) meal in diets for cockerel chicks. Arch Zootec 60(229):75–82

    Article  CAS  Google Scholar 

  118. Faria Filho DE, Dias AN, Carneiro WA, Bueno CFD, Matos Júnior JB, Veloso ALC, Rodrigues PA (2016) Detoxified castor seed cake for broilers. Braz J Poult Sci 18(1):69–72. https://doi.org/10.1590/1516-635x1801069-072

    Article  Google Scholar 

  119. Andrade IRA, Cândido MJD, Pompeu RCFF, Feitosa TS, Bomfim MAD, Salles HO, Egito ASD (2019) Inactivation of lectins from castor cake by alternative chemical compounds. Toxicon 15(160):47–54. https://doi.org/10.1016/j.toxicon.2019.02.003

    Article  CAS  Google Scholar 

  120. Mohanty A, Ranjan Rout P, Dubey B, Meena SS, Pal P, Goel M (2021) A critical review on biogas production from edible and non-edible oil cakes. Biomass Conver Bioref. https://doi.org/10.1007/s13399-021-01292-5

  121. Herculano PN, Moreira KA, Bezerra RP, Porto TS, de Souza-Motta CM, Porto AL (2016) Potential application of waste from castor bean (Ricinus communis L.) for production for xylanase of interest in the industry. 3 Biotech 6(2):144. https://doi.org/10.1007/s13205-016-0463-1

    Article  PubMed  PubMed Central  Google Scholar 

  122. Godoy MG, Gutarra MLE, Castro AM, Machado OLT, Freire DMG (2011) Adding value to a toxic residue from the biodiesel industry: production of two distinct pool of lipases from Penicillium simplicissimum in castor bean waste. J Ind Microbiol Biotechnol 38:945–953. https://doi.org/10.1007/s10295-010-0865-8

    Article  CAS  PubMed  Google Scholar 

  123. Jain R, Naik SN (2018) Adding value to the oil cake as a waste from oil processing industry: production of lipase in solid state fermentation. Biocatal Agric Biotechnol 15:181–184. https://doi.org/10.1016/j.bcab.2018.06.010

    Article  Google Scholar 

  124. Silva RGG, Vasconcelos IM, Filho AJUB, Carvalho AFU, Souza TM, Gondima DMF, Varela ALN, Oliveira JTA (2015) Castor bean cake contains a trypsin inhibitor that displays antifungal activity against Colletotrichum gloeosporioides and inhibits the midgut proteases of the dengue mosquito larvae. Ind Crop Prod 70:48–55. https://doi.org/10.1016/j.indcrop.2015.02.058

    Article  CAS  Google Scholar 

  125. Chambi HNM, Lacerda RS, Makishi GLA, Bittante AMQB, Gomide CA, Sobral PJA (2014) Protein extracted from castor bean (Ricinus communis L.) cake in high pH results in films with improved physical properties. Ind Crop Prod 61:217–224. https://doi.org/10.1016/j.indcrop.2014.07.009

    Article  CAS  Google Scholar 

  126. Prasad JS, Varaprasad KS, Rao YR, Rao ES, Sankar M (2005) Comparative efficacy of some oil seed cakes and extracts against root-knot nematode (Meloidogyne graminicola) infection in rice. Nematol Mediterr 33:191–194

    Google Scholar 

  127. Vasconcelos JS, de Almeida DH, de Almeida TH, Vasconcelos JCS, Christoforo AL, Caraschi JC, Lahr FAR (2014) Physical and chemical properties of fibrous residues of Castor bean culture. Int J Mater Eng 4(2):75–78. https://doi.org/10.5923/j.ijme.20140402.05

    Article  Google Scholar 

  128. Salem N, Bachrouch O, Sriti J, Msaada K, Khammassi S, Hammami M, Selmi S, Boushih E, Koorani S, Abderraba M, Marzouk B, Limam F, Jemaa JMB (2017) Fumigant and repellent potentials of Ricinus communis and Mentha pulegium essential oils against Triboliumcastaneum and Lasiodermaserricorne. Int J Food Prop 20(sup3):S2899–S2913. https://doi.org/10.1080/10942912.2017.1382508

    Article  CAS  Google Scholar 

  129. Sotelo-Leyva C, Salinas-Sánchez DO, Peña-Chora G, Trejo-Loyo AG, González-Cortázar M, Zamilpa A (2020) Insecticidal compounds in Ricinus communis L. (Euphorbiaceae) to control Melanaphissacchari Zehntner (Hemiptera: Aphididae). Florida Entomol 103(1):91–95

    Article  CAS  Google Scholar 

  130. Bateni H, Karimi K, Zamani A, Benakashani F (2014) Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective. Appl Energy 136:14–22

    Article  CAS  Google Scholar 

  131. Silva RVS, Casilli A, Sampaio AL, Ávila BMF, Veloso MCC, Azevedo DA, Romeiro GA (2014) The analytical characterization of castor seed cake pyrolysis bio-oils by using comprehensive GC coupled to time of flight mass spectrometry. J Anal Appl Pyrolysis 106:152–159. https://doi.org/10.1016/j.jaap.2014.01.013

    Article  CAS  Google Scholar 

  132. Aldobouni IA, Fadhil AB, Saied IK (2015) Conversion of de-oiled castor seed cake into bio-oil and carbon adsorbents. Energy Sources A Recov Util Environ Eff 37(24):2617–2624. https://doi.org/10.1080/15567036.2012.733482

    Article  CAS  Google Scholar 

  133. Schmidt HP, Wilson K (2014) The 55 uses of biochar, the Biochar Journal 2014, Arbaz, Switzerland. ISSN 2297-1114. www.biochar-journal.org/en/ct/2. Version of 12th May 2014. Accessed 24 May 2021

  134. Hilioti Z, Michailof CM, Valasiadis D, Iliopoulou EF, Koidou V, Lappas AA (2017) Characterization of castor plant-derived biochars and their effects as soil amendments on seedlings. Biomass Bioenergy 105:96–106. https://doi.org/10.1016/j.biombioe.2017.06.022

    Article  CAS  Google Scholar 

  135. Rana M, Kumar H, Parashar B (2013) In vitro anthelmintic activity of bark of Ricinus communis Linn. J Chem Pharm Res 5(6):40–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natascha Cheikhyoussef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cheikhyoussef, N., Cheikhyoussef, A. (2022). Bioactive Phytochemicals from Castor (Ricinus communis Linneo) Seed Oil Processing By-products. In: Ramadan Hassanien, M.F. (eds) Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-63961-7_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63961-7_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63961-7

  • Online ISBN: 978-3-030-63961-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics