Skip to main content

Lab-on-a-Chip Systems for Biomedical Analysis

Handbook of Bioanalytics

Abstract

Over the last few decades, significant progress has been made in the field of chemical and biochemical analysis, especially for clinical applications. It was undoubtedly influenced by miniaturization and the use of lab-on-a-chip systems. Currently, miniaturized devices are used in research laboratories as well as in medical facilities. Their main advantages include the possibility of carrying out the analysis at the point of sampling and short analysis time. Lab-on-a-chip systems can be fabricated using various materials and technologies. They are carefully selected, based on analytical parameters, for each type of analysis. In this chapter, information on selected technologies and materials used for the fabrication of microsystems will be discussed. Examples of systems for biomedical analysis will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, Y., Liu, M., Kong, N., & Liu, J. (2016). Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications. Microchimica Acta, 183, 1521–1542.

    Article  CAS  Google Scholar 

  2. Iverson, B. D., & Garimella, S. V. (2008). Recent advances in microscale pumping technologies: A review and evaluation. Microfluidics and Nanofluidics, 5, 145–174.

    Article  CAS  Google Scholar 

  3. Zhang, C., Xing, D., & Li, Y. (2007). Micropumps, microvalves and micromixers within PCR microfluidic chips: Advances and trends. Biotechnology Advances, 25, 484–514.

    Google Scholar 

  4. Köhler, M., Henkel, T., Grodrian, A., Kirnera, T., Roth, M., Martin, K., & Metze, J. (2004). Digital reaction technology by micro segmented flow – Components, concepts and applications. Chemical Engineering Journal, 101, 201–216.

    Article  CAS  Google Scholar 

  5. Peng, H.-I., Strohsahl, C. M., & Miller, B. L. (2012). Microfluidic nanoplasmonic-enabled device for multiplex DNA detection. Lab on a Chip, 12, 1089–1093.

    Article  CAS  Google Scholar 

  6. Sassa, F., Morimoto, K., Satoh, W., & Suzuki, H. (2008). Electrochemical techniques for microfluidic applications. Electrophoresis, 29, 1787–1800.

    Article  CAS  Google Scholar 

  7. Latif, U., & Dickert, F. L. (2011). Conductometric sensors for monitoring degradation of automotive engine oil. Sensors, 11, 8611–8625.

    Article  CAS  Google Scholar 

  8. Chen, X., Cui, D. F., Sun, J. H., Zhang, L. L., & Li, H. (2013). Microdevice-based DNA extraction method using green reagent. Key Engineering Materials, 562–565, 1111–1115.

    Article  CAS  Google Scholar 

  9. Chung, Y.-C., Jan, M. S., Lin, Y. C., Lin, J. H., Cheng, W. C., & Fan, C. Y. (2004). Microfluidic chip for high efficiency DNA extraction. Lab on a Chip, 4, 141–147.

    Article  CAS  Google Scholar 

  10. Wolfe, K. A., Breadmore, M. C., Ferrance, J. P., Power, M. E., Conroy, J. F., Norris, P. M., & Landers, J. P. (2002). Toward a microchip-based solid-phase extraction method for isolation of nucleic acids. Electrophoresis, 23, 727–733.

    Article  CAS  Google Scholar 

  11. Wu, J., Kodzius, R., & Cao, W. (2014). Extraction, amplification and detection of DNA in microfluidic chip-based assays. Microchimica Acta, 181, 1611–1631.

    Article  CAS  Google Scholar 

  12. Karle, M., Miwa, J., Czilwik, G., Auwärter, V., Roth, G., Zengerle, R., & von Stetten, F. (2010). Continuous microfluidic DNA extraction using phase-transfer magnetophoresis. Lab on a Chip, 10, 3284–3290.

    Article  CAS  Google Scholar 

  13. Zhang, Y., & Ozdemir, P. (2009). Microfluidic DNA amplification—A review. Analytica Chimica Acta, 638, 115–125.

    Article  CAS  Google Scholar 

  14. Mullis, K. (1990). The unusual origin of the polymerase chain reaction. Scientific American, 262, 56–61.

    Article  CAS  Google Scholar 

  15. Zhang, C., & Xing, D. (2007). Miniaturized PCR chips for nucleic acid amplification and analysis: Latest advances and future trends. Nucleic Acids Research, 35, 4223–4237.

    Article  CAS  Google Scholar 

  16. Sun, Y. (2007). A circular ferrofluid driven microchip for rapid polymerase chain reaction. Lab on a Chip, 7, 1012–1017.

    Article  CAS  Google Scholar 

  17. Zanoli, L. M., & Spoto, G. (2013). Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors, 3, 18–43.

    Article  CAS  Google Scholar 

  18. Giuffrida, M. C., & Spoto, G. (2017). Integration of isothermal amplification methods in microfluidic devices: Recent advances. Biosensors & Bioelectronics, 90, 174–186.

    Article  CAS  Google Scholar 

  19. Lai, S., Wang, S., Luo, J., Lee, L. J., Yang, S.-T., & Madou, J. M. (2004). Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Analytical Chemistry, 76, 1832–1837.

    Article  CAS  Google Scholar 

  20. Grabowska-Jadach, I., Haczyk, M., Drozd, M., Fischer, A., Pietrzak, M., Malinowska, E., & Brzózka, Z. (2016). Evaluation of biological activity of quantum dots in a microsystem. Electrophoresis, 37, 425–431.

    Article  CAS  Google Scholar 

  21. Frick, C., Dettinger, P., Renkawitz, J., Jauch, A., Berger, C. T., & Recher, M. (2018). Nano-scale microfluidics to study 3D chemotaxis at the single cell level. PLoS One, 13, e0198330.

    Article  CAS  Google Scholar 

  22. Kalinowska, D., Grabowska-Jadach, I., Liwińska, M., Drozd, M., Pietrzak, M., Dybko, A., & Brzózka, Z. (2018). Studies on effectiveness of PTT on 3D tumor model under microfluidic conditions using aptamer-modified nanoshells. Biosensors & Bioelectronics, 126, 214–221.

    Article  CAS  Google Scholar 

  23. Żuchowska, A., Marciniak, K., Bazylinska, U., Jastrzębska, E., Wilk, K., & Brzózka, Z. (2018). Different action of nanoencapsulated meso-tetraphenylporphyrin in breast spheroid co-culture and mono-culture under microfluidic conditions. Sensors and Actuators B: Chemical, 275, 69–77.

    Article  CAS  Google Scholar 

  24. https://quantumdx.com/q-poc; accessed on March 18, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Brzozka .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Grabowska-Jadach, I., Ziołkowski, R., Marchlewicz, K., Brzozka, Z. (2022). Lab-on-a-Chip Systems for Biomedical Analysis. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-63957-0_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63957-0_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63957-0

  • Online ISBN: 978-3-030-63957-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Lab-on-a-Chip Systems for Biomedical Analysis
    Published:
    18 March 2022

    DOI: https://doi.org/10.1007/978-3-030-63957-0_31-2

  2. Original

    Lab-on-a-Chip Systems for Biomedical Analysis
    Published:
    09 January 2022

    DOI: https://doi.org/10.1007/978-3-030-63957-0_31-1