Skip to main content

Numerical Simulation of the NOx Chemical Kinetic Removal by Under Various Reduced Electric Fields

  • Conference paper
  • First Online:
Artificial Intelligence and Renewables Towards an Energy Transition (ICAIRES 2020)

Abstract

In this work, a chemical kinetic analysis of different species involved in nitrogen-oxygen mixed gas treated by stationary negative corona discharge. We take account 16 different chemical species reacting following 120 selected chemicals reactions. The mathematical model used consists of a system of equations that takes into account the variation of the density and the chemical kinetics of the environment. The reaction rate coefficients are taken from the literature. We analyse especially, the time evolution (10−9–10−3 s) of NO, NO2, NO3 and N2O5 species under different values of electrical field. The results show that the evolution of these nitrous oxides is substantially affected by the application of the electrical discharge. This allows us the important role played by the negative corona discharge in NOx removing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Orlandini, I., Riedel, U.: J. Phys. D Appl. Phys. 33, 2467 (2000)

    Article  Google Scholar 

  2. Hatakeyama, K., Tanabe, S., Hayashi, Y., et al.: J. Adv. Sci. 13, 459 (2001)

    Article  Google Scholar 

  3. Yoshida, K., Rajanikanth, B.S., Okubo, M.: Plasma Technol. Sci. 11, 327 (2009)

    Article  Google Scholar 

  4. Haddouche, A., Lemerini, M.: Plasma Sci. Technol 17, 589 (2015)

    Article  Google Scholar 

  5. Ferouani, A.K., Lemerini, M., Belhour, S.: AIP Conf. Proc. 1047, 232 (2008)

    Article  Google Scholar 

  6. Ferouani, A.K., Lemerini, M., Belhour, S.: Plasma Sci. Technol 12, 208 (2010)

    Article  Google Scholar 

  7. Ferouani, A.K., Lemerini, M., Liani, B.: Numerical Modelling. Croatia, P.M. (ed.), vol. 143 (2012)

    Google Scholar 

  8. Ferouani, A.K., Lemerini, M., Merad, L., et al.: Plasma Sci. Technol 17, 469 (2015)

    Article  Google Scholar 

  9. Miao, L., Tanemura, S., Watanabe, H., et al.: J. Crystal Growth 260, 118 (2004)

    Article  Google Scholar 

  10. Spyrou, N., Held, B., Peyrous, R., et al.: J. Phys. D 25, 211 (1992)

    Article  Google Scholar 

  11. Eichwald, O., Jugroot, M., Bayle, P.: J. Appl. Phys. 80, 694 (1996)

    Article  Google Scholar 

  12. Haddouche, A., Lemerini, M.: Plasma Sci. Technol 17, 589 (2015)

    Article  Google Scholar 

  13. Bouzar, M., Ferouani, A.K., Lemerini, M.: High Temp. Mater. Process. 21, 13 (2017)

    Article  Google Scholar 

  14. Loiseau, J.F., Batina, J., Noël, F., et al.: J. Phys. D Appl. Phys. 35, 1020 (2002)

    Article  Google Scholar 

  15. Kossyi, I.A., Kostinsky, A.Y., Matveyev, A.A., et al.: Plasma Sources Sci. Technol. 1, 207 (1992)

    Article  Google Scholar 

  16. Eichwald, O., Guntoro, N.A., Yousfi, M., et al.: J. Phys. D Appl. Phys. 35, 439 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Askri Souhaila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Souhaila, A., Karim, F.A., Lemerini, M. (2021). Numerical Simulation of the NOx Chemical Kinetic Removal by Under Various Reduced Electric Fields. In: Hatti, M. (eds) Artificial Intelligence and Renewables Towards an Energy Transition. ICAIRES 2020. Lecture Notes in Networks and Systems, vol 174. Springer, Cham. https://doi.org/10.1007/978-3-030-63846-7_95

Download citation

Publish with us

Policies and ethics