Skip to main content

Dynamic Simulation and Kinematic Control for Autonomous Driving in Automobile Robots

  • Conference paper
  • First Online:
Advances in Emerging Trends and Technologies (ICAETT 2020)

Abstract

This article proposes a simple simulation methodology that allows to experiment with the dynamic behavior of vehicles, which applies control laws that allow automated driving in unstructured environments, through the use of robotic application simulation software Webots, which shortens the experimentation times of autonomous driving systems, It also allows to overcome the limitations that this type of projects involves, such as, high infrastructure costs, the difficulties of validating the system, qualified personnel and the participation of various elements with different dynamic behaviors that make up a real traffic space. The use of the virtualized model of a BMW X5 vehicle and the instrumentation of multiple sensors necessary for its operation are presented. Finally, a path tracking algorithm is developed using Matlab scientific programming software, and the dynamic behavior of the vehicle is evaluated through the response curves of the robot states, these results represent the starting point for future research and the implementation of physical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kümmerle, R., Hähnel, D., Dolgov, D., Thrun, S., Burgard, W.: Autonomous driving in a multi-level parking structure. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 3395–3400 (2009)

    Google Scholar 

  2. Toibero, M., Roberti, F., Herrera, D., Amicarelli, A., Carelli, R.: Controlador Estable para Seguimiento de Caminos en Robots Car-Like basado en Espacio Nulo. In: 2015 XVI Work. Inf. Process. Control (RPIC), Co-sponsored by IEEE, no. April 2016 (2015)

    Google Scholar 

  3. Mcdonald, M., Jeffery, D., Piao Tecnalia, J., Sanchez, J.: Definition of necessary vehicle and infrastructure systems for automated driving. base.connectedautomateddriving.eu (2011)

    Google Scholar 

  4. Lenain, R., Thuilot, B., Cariou, C., Martinet, P.: Mobile robot control in presence of sliding: application to agricultural vehicle path tracking. In: Proceedings of the IEEE Conference on Decision and Control, pp. 6004–6009 (2006)

    Google Scholar 

  5. Gruyer, D., Magnier, V., Hamdi, K., Claussmann, L., Orfila, O., Rakotonirainy, A.: Perception, information processing and modeling: critical stages for autonomous driving applications. Ann. Rev. Control 44, 323–341 (2017)

    Article  Google Scholar 

  6. Choi, J., Chun, D., Kim, H., Lee, H.-J.: Gaussian YOLOv3: an accurate and fast object detector using localization uncertainty for autonomous driving (2019)

    Google Scholar 

  7. Brumitt, B., Stentz, A., Hebert, M., Group, T.C.U.: Autonomous driving with concurrent goals and multiple vehicles: mission planning and architecture. Auton. Robots 11(2), 103–115 (2001)

    Article  Google Scholar 

  8. Vieira, B., Severino, R., Filho, E.V., Koubaa, A., Tovar, E.: COPADRIVe - a realistic simulation framework for cooperative autonomous driving applications. In: 2019 8th IEEE International Conference on Connected Vehicles and Expo, ICCVE 2019 - Proceedings (2019)

    Google Scholar 

  9. Talpaert, V., et al.: Exploring applications of deep reinforcement learning for real-world autonomous driving systems. In: VISIGRAPP 2019 - Proceeding 14th International Jt. Conference Computer Vision, Imaging Computer Graphical Theory Application, vol. 5, pp. 564–572, January 2019

    Google Scholar 

  10. Tsugawa, S.: Automated driving systems: common ground of automobiles and robots. Int. J. Humanoid Robot. 8(1), 1–12 (2011)

    Article  Google Scholar 

  11. Castaño, F., Beruvides, G., Villalonga, A., Haber, R.E.: Self-tuning method for increased obstacle detection reliability based on internet of things LiDAR sensor models. Sensors (Switzerland) 18(5), 1–16 (2018)

    Article  Google Scholar 

  12. Cachumba, S.J., Briceño, P.A., Andaluz, V.H., Erazo, G.: Autonomous driver assistant for collision prevention. In: ACM International Conference Proceeding Series, pp. 327–332 (2019)

    Google Scholar 

  13. Karoui, O., et al.: Performance evaluation of vehicular platoons using Webots. IET Intell. Transp. Syst. 11(8), 441–449 (2017)

    Article  Google Scholar 

  14. Stotsky, A., Hu, X.: Control of car-like robots using sliding observers for steering angle estimation. In: Proceeding of IEEE Conference Decision Control, vol. 4, no. December, pp. 3648–3653 (1997)

    Google Scholar 

  15. Lee, S., Kim, M., Youm, Y., Chung, W.: Control of a car-like mobile robot for parking problem. In: Proceeding - IEEE International Conference on Robotics and Automation, vol. 1, no. May, pp. 1–6 (1999)

    Google Scholar 

  16. Michel, O.: Webots: professional mobile robot simulation. Int. J. Adv. Robot. Syst. 1(1), 39–42 (2004)

    Article  Google Scholar 

  17. Ma, X., Mu, C., Wang, X., Chen, J.: Projective geometry model for lane departure warning system in webots. In: 2019 5th International Conference on Control, Automation Robotics ICCAR 2019, pp. 689–695 (2019)

    Google Scholar 

  18. Tuncali, C.E., Fainekos, G., Prokhorov, D., Ito, H., Kapinski, J.: Requirements-driven test generation for autonomous vehicles with machine learning components. IEEE Trans. Intell. Veh. 5(2), 265–280 (2020)

    Article  Google Scholar 

  19. colaboradores de Wikipedia, “BMW X5,” (2020)

    Google Scholar 

  20. B, C.S., Meissgeier, F., Bruegge, B., Verclas, S.: System : a cyber-physical human system, vol. 1, no. ii, pp. 267–280 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Escuela Superior Politécnica de Chimborazo ESPOCH for the support to develop the research project “Análisis, diseño e implementación de algoritmos de control inteligente en controladores con una red de sensores IoT en vehículos para mejorar la seguridad vial”; also to Universidad de las Fuerzas Armadas ESPE and the Research Groups GITEA and ARSI, for the support for the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny J. Zea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zea, D.J., Guevara, B.S., Recalde, L.F., Andaluz, V.H. (2021). Dynamic Simulation and Kinematic Control for Autonomous Driving in Automobile Robots. In: Botto-Tobar, M., S. Gómez, O., Rosero Miranda, R., Díaz Cadena, A. (eds) Advances in Emerging Trends and Technologies. ICAETT 2020. Advances in Intelligent Systems and Computing, vol 1302. Springer, Cham. https://doi.org/10.1007/978-3-030-63665-4_16

Download citation

Publish with us

Policies and ethics