Skip to main content

Magnetic Sensors

  • Reference work entry
  • First Online:
Handbook of Magnetism and Magnetic Materials

Abstract

Here the fundamentals of magnetic sensing are introduced and several types of magnetic flux and field sensors are presented. Flux sensors are inductive coils, fluxgates, and SQUIDs. Field sensors depend on Hall effect, anisotropic magnetoresistance, spin electronics (giant magnetoresistance and tunnel magnetoresistance), optical pumping, giant magnetoimpedance, and magnetoelectric effects. Some specific readout schemes are discussed. The noise aspect is discussed and comparative tables are provided of the various sensors including their sensitivity, field range, minimal detectable noise, advantages, and drawbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ripka, P.: Magnetic Sensors and Magnetometers. Artech House Publishers, Boston (2001). ISBN: 978-1-58053-057-6

    Google Scholar 

  2. Robbes, D.: Highly sensitive magnetometers a review. Sensors Actuators A Phys. 129(1–2), 86–93 (2006)

    Article  Google Scholar 

  3. Tumanski, S.: Induction coil sensors a review. Meas. Sci. Technol. 18(3), R31 (2007)

    Article  ADS  Google Scholar 

  4. Coillot, C., Leroy, P.: Chapter 3: Induction magnetometers principle, modeling and ways of improvement. In: Magnetic Sensors- Principles and Applications. InTech, London (2012)

    Google Scholar 

  5. Butta, M.: Chapter 2: Orthognal fluxgates. In: Magnetic Sensors- Principles and Applications. InTech, London (2012)

    Google Scholar 

  6. http://www.bartington.com, 2015

    Google Scholar 

  7. Clarke, J., Braginski, A.I.: The SQUID Handbook: Vol. I Fundamentals and Technology of SQUIDs and SQUID Systems. Wiley-VCH, Zurich (2004)

    Book  Google Scholar 

  8. Clarke, J., Braginski, A.I.: The SQUID Handbook: Vol. II Applications of SQUIDs and SQUIDs Systems. Wiley-VCH, Zurich (2006)

    Book  Google Scholar 

  9. Aine, C.J., Supek, S.: Magnetoencephalography: From Signals to Dynamic Cortical Networks. Springer (2014)

    MATH  Google Scholar 

  10. M.R.J. Gibbs and P.T. Squire. Magnetic and magnetoelastic properties of amorphous ribbons and wires. In Magnetic Ribbons and Wires in Power, Electronic and Automotive Applications, IEE Colloquium on, pp. 4/1–4/4, Nov 1990

    Google Scholar 

  11. Hall, E.H.: On a new action of the magnet on electric currents. Am. J. Math. 2(3), 287–292 (1879)

    Article  MathSciNet  Google Scholar 

  12. Thomson, W.: On the electro-dynamic qualities of metals:–effects of magnetization on the electric conductivity of nickel and of iron. Proc. R. Soc. Lond. 8, 546–550 (1856)

    ADS  Google Scholar 

  13. Coey, J.M.D.: Magnetism and Magnetic Materials. Cambridge University Press (2010)

    Google Scholar 

  14. Baibich, M.N., Broto, J.M., Fert, A., Nguyen Van Dau, F., Petroff, F., Etienne, P., Creuzet, G., Friederich, A., Chazelas, J.: Giant magnetoresistance of (001)fe/(001)cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    Article  ADS  Google Scholar 

  15. Dieny, B., Speriosu, V.S., Parkin, S.S.P., Gurney, B.A., Wilhoit, D.R., Mauri, D.: Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B. 43, 1297–1300 (1991)

    Article  ADS  Google Scholar 

  16. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y., Ando, K.: Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3(12), 868–871 (2004)

    Article  ADS  Google Scholar 

  17. Parkin, S.S.P., Kaiser, C., Panchula, A., Rice, P.M., Hughes, B., Samant, M., Yang, S.-H.: Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3(12), 862–867 (2004)

    Article  ADS  Google Scholar 

  18. Bloom, A.L.: Principles of operation of the rubidium vapormagnetometer. Appl. Opt. 1(1), 61–68 (1962)

    Article  ADS  Google Scholar 

  19. Dupont-Roc, J., Haroche, S., Cohen-Tannoudji, C.: Detection of very weak magnetic fields (10−9gauss) by 87Rb zero-field level crossing resonances. Phys. Lett. A. 28(9), 638–639 (1969)

    Article  ADS  Google Scholar 

  20. Dehmelt, H.G.: Modulation of a light beam by precessing absorbing atoms. Phys. Rev. 105, 1924–1925 (1957)

    Article  ADS  Google Scholar 

  21. Kominis, I.K., Kornack, T.W., Allred, J.C., Romalis, M.V.: A subfemtotesla multichannel atomic magnetometer. Nature. 422(6932), 596–599 (2003)

    Article  ADS  Google Scholar 

  22. Budker, D., Romalis, M.: Optical magnetometry. Nat. Phys. 3(4), 227–234 (2007)

    Article  Google Scholar 

  23. Clark Griffith, W., Knappe, S., Kitching, J.: Femtotesla atomic magnetometry in a microfabricated vapor cell. Opt. Express. 18(26), 27167–27172 (2010)

    Article  ADS  Google Scholar 

  24. Beach, R.S., Berkowitz, A.E.: Giant magnetic field dependent impedance of amorphous fecosib wire. Appl. Phys. Lett. 64(26), 3652–3654 (1994)

    Article  ADS  Google Scholar 

  25. Rao, K.V., Humphrey, F.B., Costa Kramer, J.L.: Very large magnetoimpedance in amorphous soft ferromagnetic wires (invited). J. Appl. Phys. 76(10), 6204–6208 (1994)

    Article  ADS  Google Scholar 

  26. Hans Hauser, L.K., Ripka, P.: Giant magnetoimpedance sensors. IEEE Instrum. Meas. Mag. 4(2), 28–32 (2001)

    Article  Google Scholar 

  27. Phan, M.-H., Peng, H.-X.: Giant magnetoimpedance materials: fundamentals and applications. Prog. Mater. Sci. 53(2), 323–420 (2008)

    Article  Google Scholar 

  28. Vazquez, M., Chiriac, H., Zhukov, A., Panina, L., Uchiyama, T.: On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies. Phys. Status Solidi A Appl. Mater. Sci. 208(3), 493–501 (2011)

    Article  ADS  Google Scholar 

  29. Zhukov, A., Ipatov, M., Churyukanova, M., Kaloshkin, S., Zhukova, V.: Giant magnetoimpedance in thin amorphous wires: from manipulation of magnetic field dependence to industrial applications. J. Alloys Compd. 586, Supplement 1(0):S279–S286 (2014). {SI}: {ISMANAM} 2012

    Google Scholar 

  30. Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature. 442(7104), 759–765 (2006)

    Article  ADS  Google Scholar 

  31. de Freitas, S.C., Mukhopadhyay, S.C., Reig, C. (eds.): Giant Magnetoresistance (GMR) Sensors, pp. 47–70. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  32. Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (Jul 1928)

    Article  ADS  Google Scholar 

  33. Hooge, F.N., Hoppenbrouwers, A.: 1/f noise in continuous gold films. Physica. 45, 386 (1969)

    Article  ADS  Google Scholar 

  34. Trindade, I.G., Oliveira, J., Fermento, R., Sousa, J.B., Cardoso, S., Freitas, P.P., Raghunathan, A., Snyder, J.E.: Soft thin films for flux concentrators. IEEE Trans. Magn. 45(1), 168–171 (2009)

    Article  ADS  Google Scholar 

  35. Clark Griffith, W., Jimenez-Martinez, R., Shah, V., Knappe, S., Kitching, J.: Miniature atomic magnetometer integrated with flux concentrators. Appl. Phys. Lett. 94(2) (2009)

    Google Scholar 

  36. Pannetier, M., Fermon, C., Le Goff, G., Simola, J., Kerr, E.: Femtotesla magnetic field measurement with magnetoresistive sensors. Science. 304(5677), 1648–1650 (2004)

    Article  ADS  Google Scholar 

  37. Lenz, J., Edelstein, A.S.: Magnetic sensors and their applications. IEEE Sensors J. 6(3), 631–649 (2006)

    Article  ADS  Google Scholar 

  38. Kerlain, A., Mosser, V.: Dynamic low-frequency noise cancellation in quantum well hall sensors (qwhs). Sensors Actuators A Phys. 142(2), 528–532 (2008) The sixth European Magnetic Sensor and Actuator conference The Sixth European Magnetic Sensor and Actuator conference

    Article  Google Scholar 

  39. Kerlain, A., Mosser, V.: Low frequency noise suppression in iii–v hall magnetic microsystems with integrated switches. Sens. Lett. 5(1), 192–195 (2007)

    Article  Google Scholar 

  40. Stutzke, N.A., Russek, S.E., Pappas, D.P., Tondra, M.: Low-frequency noise measurements on commercial magnetoresistive magnetic field sensors. J. Appl. Phys. 97, 10Q107 (2005)

    Google Scholar 

  41. Zimmermann, E., Verweerd, A., Glaas, W., Tillmann, A., Kemna, A.: An AMR sensor-based measurement system for magnetoelectrical resistivity tomography. IEEE Sensors J. 5(2), 233–241 (2005)

    Article  ADS  Google Scholar 

  42. Cardoso, S., Leitao, D.C., Gameiro, L., Cardoso, F., Ferreira, R., Paz, E., Freitas, P.P.: Magnetic tunnel junction sensors with ptesla sensitivity. Microsyst. Technol. 20(4–5), 793–802 (2014)

    Article  Google Scholar 

  43. E. Paz, S. Serrano-Guisan, R. Ferreira, P.P. Freitas.: J. Appl. Phys. 115, 17E501 (2014). https://doi.org/10.1063/1.4859036

  44. Valadeiro, J.P., Amaral, J., Leitao, D.C., Ferreira, R., Cardoso, S.-s.F., Freitas, P.J.P.: Strategies for pTesla field detection using magnetoresistive sensors with a soft pinned sensing layer. IEEE Trans. Magn. 51(1), 1 (2015)

    Article  Google Scholar 

  45. Dang, H.B., Maloof, A.C., Romalis, M.V.: Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer. Appl. Phys. Lett. 97(15), 151110 (2010)

    Google Scholar 

  46. Portalier, E., Dufay, B., Saez, S., Dolabdjian, C.: Noise behavior of high sensitive GMI-based magnetometer relative to conditioning parameters. IEEE Trans. Magn. 51(1), 1–4 (2015)

    Article  Google Scholar 

  47. Zhuang, X., Sing, M.L.C., Dolabdjian, C., Wang, Y., Finkel, P., Li, J., Viehland, D.: Mechanical noise limit of a strain-coupled mag- neto(elasto)electric sensor operating under a magnetic or an electric field modulation. IEEE Sensors J. 15(3), 1575–1587 (2015)

    Article  ADS  Google Scholar 

  48. Ripka, P., Janosek, M.: Advances in magnetic field sensors. IEEE Sensors J. 10(6), 1108–1116 (2010)

    Article  ADS  Google Scholar 

  49. Staudacher, T., Shi, F., Pezzagna, S., Meijer, J., Du, J., Meriles, CA., Reinhard, F., Wrachtrup, J.: Nuclear magnetic resonance spectroscopy on a (5-Nanometer)3 sample volume. Science. 339(6119), 561–563 (2013). https://doi.org/10.1126/science.1231675

  50. Tetienne, J.-P., Hingant, T., Martinez, L. J., Rohart, S., Thiaville, A., Diez, L. H., Garcia, K., Adam, J.-P., Kim, J.-V., Roch, J.-F., Miron, I. M., Gaudin, G., Vila, L., Ocker, B., Ravelosona, D., Jacques, V.: The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nature Communications. 6, 6733 (2015). https://doi.org/10.1038/ncomms7733

  51. Rondin, L., Tetienne, J.-P., Hingant, T., Roch, J.-F., Maletinsky, P., Jacques, V.: Magnetometry with nitrogen-vacancy defects in diamond. Reports on Progress in Physics. 77(5) 056503 (2014). https://doi.org/10.1088/0034-4885/77/5/056503

  52. Balasubramanian, G., Chan, I. Y., Kolesov, R., Al-Hmoud, M., Tisler, J., Shin, C., Kim, C., Wojcik, A., Hemmer, P. R., Krueger, A., Hanke, T., Leitenstorfer, A., Bratschitsch, R., Jelezko, F., Wrachtrup, J.: Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature. 455, 648 (2008). https://doi.org/10.1038/nature07278

  53. Maze, J. R., Stanwix, P. L., Hodges, J. S., Hong, S., Taylor, J. M., Cappellaro, P., Jiang, L., Dutt, M. V. G., Togan, E., Zibrov, A. S., Yacoby, A., Walsworth, R. L., Lukin, M. D.: Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature. 455, 644 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Pannetier-Lecoeur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pannetier-Lecoeur, M., Fermon, C. (2021). Magnetic Sensors. In: Coey, J.M.D., Parkin, S.S. (eds) Handbook of Magnetism and Magnetic Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-63210-6_30

Download citation

Publish with us

Policies and ethics