Skip to main content

Peritoneal Structure and Changes as a Dialysis Membrane After Peritoneal Dialysis

  • Reference work entry
  • First Online:
Nolph and Gokal's Textbook of Peritoneal Dialysis

Abstract

In this chapter, the purpose of the authors and editors is to review and concentrate the incomparable information included in the 3rd edition of this Textbook by L. Gotloib, maintaining the most significant messages relative to mesothelial cell role in the peritoneal membrane. For more profound knowledge in this particular field, the reader is referred to the complete chapter published in the 3rd edition of this Textbook, as Gotloib as the sole author.

Our contribution will be to specifically add the changes that the structure of the membrane suffers during peritoneal dialysis treatment in each of its components, including the epithelial-to-mesenchymal transition of mesothelial cells, angiogenesis/vasculopathy and interstitial fibrosis/sclerosis, as well as the connections between these processes, to give the clinician an active view of all these components and their relationship with functional changes.

L. Gotloib: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Robinson B. The peritoneum. Chicago: WT Keener; 1897.

    Google Scholar 

  2. Ganter G. Uber die Beseitigung giftiger Stoffe aus dem Blute durch dialyse. Münchener Medizinische Wochenschrift. 1923;70:1478–80.

    Google Scholar 

  3. Boen S. Peritoneal dialysis in clinical medicine. Springfield: Charles C. Thomas; 1964.

    Google Scholar 

  4. Tenckhoff H, Schechter H. A bacteriologically safe peritoneal access device. Trans Am Soc Artif Intern Organs. 1968;14:181–7.

    CAS  PubMed  Google Scholar 

  5. Popovich R, Moncrief JW. Preliminary verification of the low dialysis clearance hypothesis via a novel equilibrium peritoneal dialysis technique. Abst Am Soc Artif Intern Organs. 1976;5:64.

    Google Scholar 

  6. Nolph KD, Sorkin M, Rubin J, Arfania D, Prowant B, Fruto L, Kennedy D. Continuous ambulatory peritoneal dialysis: three-year experience at one center. Ann Intern Med. 1980;92(5):609–13.

    Article  CAS  PubMed  Google Scholar 

  7. Luschka H. Die Structur der serösen häute des Menschen. Tubingen: Verlag der H. Laupp’schen Buchhandlung; 1851.

    Google Scholar 

  8. Putiloff P. Materials for the study of the laws of growth of the human body in relation to the surface areas of different systems: the trial on Russian subjects of planigraphic anatomy as a mean of exact anthropometry. In Presented at the Siberian branch of the Russian Geographic Society, Omsk. 1886.

    Google Scholar 

  9. Wegner G. Chirurgische bemerkingen uber die peritoneal Hole, mit Besonderer Berucksichtigung der ovariotomie. Arch Klin Chir. 1877;20:51–9.

    Google Scholar 

  10. Esperanca M, Collins DL. Peritoneal dialysis efficiency in relation to body weight. J Pediatr Surg. 1966;1:162–9.

    Article  Google Scholar 

  11. Krediet RT, Zemel D, Imholz AL, Struijk DG. Impact of surface area and permeability on solute clearances. Perit Dial Int. 1994;14(Suppl 3):S70–7.

    Article  PubMed  Google Scholar 

  12. Chagnac A, Herskovitz P, Weinstein T, Elyashiv S, Hirsh J, Hammel I, et al. The peritoneal membrane in peritoneal dialysis patients: estimation of its functional surface area by applying stereologic methods to computerized tomography scans. J Am Soc Nephrol. 1999;10(2):342–6.

    Article  CAS  PubMed  Google Scholar 

  13. Flessner MF. Small-solute transport across specific peritoneal tissue surfaces in the rat. J Am Soc Nephrol. 1996;7(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  14. Gotloib L, Digenis GE, Rabinovich S, Medline A, Oreopoulos DG. Ultrastructure of normal rabbit mesentery. Nephron. 1983;34(4):248–55.

    Article  CAS  PubMed  Google Scholar 

  15. Gosselin R, Berndt W. Diffusional transport of solutes through mesentery and peritoneum. J Theor Biol. 1962;3:487.

    Article  CAS  Google Scholar 

  16. Gotloib L. Functional structure of the peritoneum as a dialyzing membrane. Chapter 5. In Gokal R, Khanna R, Krediet R Th, Nolph KD, editors. Nolph and Gokal’s textbook of peritoneal dialysis, 3rd edn. New York: Springer Science & Business Media, LLC; 2009. p. 72–136.

    Google Scholar 

  17. Ukeshima A, Hayashi Y, Fujimoto T. Surface morphology of the human yolk sac: endoderm and mesothelium. Arch Histol Jpn. 1986;49(4):483–94.

    Article  CAS  PubMed  Google Scholar 

  18. Odor DL. Observations of the rat mesothelium with the electron and phase microscopes. Am J Anat. 1954;95(3):433–65.

    Article  CAS  PubMed  Google Scholar 

  19. Baradi AF, Hope J. Observations on ultrastructure of rabbit mesothelium. Exp Cell Res. 1964;34:33–44.

    Article  CAS  PubMed  Google Scholar 

  20. Efskind L, Closs K. Experimentelle untersuchungen über die biologie des peritoneums. Die morphologische reaktion des peritoneums auf riexze. Oslo: ed. O. Norske videnskaps-akademi i/I kommisjon hos J. Dybwad; 1940.

    Google Scholar 

  21. Gotloib L, Shostak A. Ultrastructural morphology of the peritoneum: new findings and speculations on transfer of solutes and water during peritoneal dialysis. Perit Dial Bull. 1987;7:119–29.

    Article  Google Scholar 

  22. Gotloib L. Anatomical basis for peritoneal permeability. In: La Greca G, et al., editors. Peritoneal dialysis. Milan: Wichtig Ed; 1986. p. 3–10.

    Google Scholar 

  23. Gotloib L, Shostack A, Jaichenko J. Ruthenium-red-stained anionic charges of rat and mice mesothelial cells and basal lamina: the peritoneum is a negatively charged dialyzing membrane. Nephron. 1988;48(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  24. Gotloib L, Bar Sella P, Jaichenko J, Shustack A. Ruthenium-red-stained polyanionic fixed charges in peritoneal microvessels. Nephron. 1987;47(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  25. Curry FE, Michel CC. A fiber matrix model of capillary permeability. Microvasc Res. 1980;20(1):96–9.

    Article  CAS  PubMed  Google Scholar 

  26. Lewis W. Pinocytosis. Bull Johns Hopkins Hosp. 1931;49:17–23.

    Google Scholar 

  27. Dalton AJ, Felix MD. A comparison of mesothelial cells and macrophages in mice after the intraperitoneal inoculation of melanin granules. J Biophys Biochem Cytol. 1956;2(4 Suppl):109–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fukata H. Electron microscopic study on normal rat peritoneal mesothelium and its changes in absorption of particulate iron dextran complex. Acta Pathol Jpn. 1963;13:309–25.

    CAS  PubMed  Google Scholar 

  29. Casley-Smith JR. The dimensions and numbers of small vesicles in cells, endothelial and mesothelial and the significance of these for endothelial permeability. J Microsc. 1969;90(3):251–68.

    Article  CAS  PubMed  Google Scholar 

  30. Casley-Smith JR, Chin JC. The passage of cytoplasmic vesicles across endothelial and mesothelial cells. J Microsc. 1971;93(3):167–89.

    Article  CAS  PubMed  Google Scholar 

  31. Fedorko ME, Hirsch JG, Fried B. Studies on transport of macromolecules and small particles across mesothelial cells of the mouse omentum. II. Kinetic features and metabolic requirements. Exp Cell Res. 1971;69(2):313–23.

    Article  CAS  PubMed  Google Scholar 

  32. Simionescu N, Simionescu M, Palade GE. Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. II. Pathways followed by microperoxidase across the endothelium. Microvasc Res. 1978;15(1):17–36.

    Article  CAS  PubMed  Google Scholar 

  33. Palade G. Fine structure of blood capillaries. J Appl Phys. 1953;24:1424.

    Google Scholar 

  34. Wagner RC, Robinson CS. High-voltage electron microscopy of capillary endothelial vesicles. Microvasc Res. 1984;28(2):197–205.

    Article  CAS  PubMed  Google Scholar 

  35. Chambers R, Zweifach B. Capillary cement in relation to permeability. J Cell Comp Physiol. 1940;15:255–72.

    Article  CAS  Google Scholar 

  36. Grotte G. Passage of dextran molecules across the blood-lymph barrier. Acta Chir Scand Suppl. 1956;211:1–84.

    CAS  PubMed  Google Scholar 

  37. Nolph KD. The peritoneal dialysis system. Contrib Nephrol. 1979;17:44–50.

    Article  CAS  PubMed  Google Scholar 

  38. Rippe B. A three-pore model of peritoneal transport. Perit Dial Int. 1993;13(Suppl 2):S35–8.

    Article  PubMed  Google Scholar 

  39. Schnitzer JE, Allard J, Oh P. NEM inhibits transcytosis, endocytosis, and capillary permeability: implication of caveolae fusion in endothelia. Am J Phys. 1995;268(1 Pt 2):H48–55.

    CAS  Google Scholar 

  40. Palade GE, Simionescu M, Simionescu N. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand Suppl. 1979;463:11–32.

    CAS  PubMed  Google Scholar 

  41. Lin HC, Duncan JA, Kozasa T, Gilman AG. Sequestration of the G protein beta gamma subunit complex inhibits receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1998;95(9):5057–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Simionescu N, Simionescu M, Palade GE. Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol. 1981;90(3):605–13.

    Article  CAS  PubMed  Google Scholar 

  43. Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983;96(1):1–27.

    Article  CAS  PubMed  Google Scholar 

  44. Fischereder M, Schröppel B, Wiese P, Fink M, Banas B, Schmidbauer S, et al. Regulation of glucose transporters in human peritoneal mesothelial cells. J Nephrol. 2003;16(1):103–9.

    CAS  PubMed  Google Scholar 

  45. Takahashi H. Regulation and localization of peritoneal water channels in rats. In: VIIIth congress of the international society for peritoneal dialysis. ISPD 98. Seoul: Perit Dial Int; 1998. p. S70.

    Google Scholar 

  46. Henle F. Splacnologie, vol. II. 1875. p. 175.

    Google Scholar 

  47. Simionescu M, Simionescu N. Organization of cell junctions in the peritoneal mesothelium. J Cell Biol. 1977;74(1):98–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leak LV. Distribution of cell surface charges on mesothelium and lymphatic endothelium. Microvasc Res. 1986;31(1):18–30.

    Article  CAS  PubMed  Google Scholar 

  49. Tsilibary EC, Wissig SL. Absorption from the peritoneal cavity: SEM study of the mesothelium covering the peritoneal surface of the muscular portion of the diaphragm. Am J Anat. 1977;149(1):127–33.

    Article  CAS  PubMed  Google Scholar 

  50. Remmele W, Richter IE, Wildenhof H. [Experimental investigations on cell resorption from the peritoneal cavity by use of the scanning electron microscope (author’s transl)]. Klin Wochenschr. 1975;53(19):913–22.

    Google Scholar 

  51. Gotloib L, Shostak A. Endocytosis and transcytosis of albumin gold through mice peritoneal mesothelium. Kidney Int. 1995;47(5):1274–84.

    Article  CAS  PubMed  Google Scholar 

  52. Herzog R, Tarantino S, Rudolf A, Aufricht C, Kratochwill K, Witowski J. Senescence-associated changes in proteome and O-GlcNAcylation pattern in human peritoneal mesothelial cells. Biomed Res Int. 2015;2015:382652.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mutsaers SE, Prêle CM, Pengelly S, Herrick SE. Mesothelial cells and peritoneal homeostasis. Fertil Steril. 2016;106(5):1018–24.

    Article  PubMed  Google Scholar 

  54. Todd RB, Bowman W. The physiological anatomy and physiology of man, vol. I and II. London: Parker; 1846 and 1846.

    Google Scholar 

  55. Bizzozero G, Salvioli G. Sulla suttura della membrana serosa e particolarmente del peritoneo diaphragmatico. Giorn R Acad Med Torino. 1876;19:466–70.

    Google Scholar 

  56. Kanwar YS, Farquhar MG. Anionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes. J Cell Biol. 1979;81(1):137–53.

    Article  CAS  PubMed  Google Scholar 

  57. Rohrbach R. Reduced content and abnormal distribution of anionic sites (acid proteoglycans) in the diabetic glomerular basement membrane. Virchows Arch B Cell Pathol Incl Mol Pathol. 1986;51(2):127–35.

    Article  CAS  PubMed  Google Scholar 

  58. Ghinea N, Simionescu N. Anionized and cationized hemeundecapeptides as probes for cell surface charge and permeability studies: differentiated labeling of endothelial plasmalemmal vesicles. J Cell Biol. 1985;100(2):606–12.

    Article  CAS  PubMed  Google Scholar 

  59. Gotloib L, Shustak A, Jaichenko J. Loss of mesothelial electronegative fixed charges during murine septic peritonitis. Nephron. 1989;51(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  60. Shostak A, Gotloib L. Increased peritoneal permeability to albumin in streptozotocin diabetic rats. Kidney Int. 1996;49(3):705–14.

    Article  CAS  PubMed  Google Scholar 

  61. Gotloib L. Reduplicated skin and peritoneal blood capillaries and mesothelial basement membrane in aged non-diabetic chronic uremic patients. Perit Dial Bull. 1984;4:S28.

    Google Scholar 

  62. Gersh I, Catchpole HR. The organization of ground substance and basement membrane and its significance in tissue injury disease and growth. Am J Anat. 1949;85(3):457–521, incl 7 pl.

    Article  CAS  PubMed  Google Scholar 

  63. Vracko R, Pecoraro RE, Carter WB. Overview article: basal lamina of epidermis, muscle fibers, muscle capillaries, and renal tubules: changes with aging and in diabetes mellitus. Ultrastruct Pathol. 1980;1(4):559–74.

    Article  CAS  PubMed  Google Scholar 

  64. Gokal R, Ramos JM, Ward MK, Kerr DN. “Eosinophilic” peritonitis in continuous ambulatory peritoneal dialysis (CAPD). Clin Nephrol. 1981;15(6):328–30.

    CAS  PubMed  Google Scholar 

  65. Di Paolo N, Sacchi G. Atlas of peritoneal histology. Perit Dial Int. 2000;20(Suppl 3):S5–96.

    PubMed  Google Scholar 

  66. Hruza Z. Connective tissue. In: Kaley G, Altura B, editors. Microcirculation, vol. I. Baltimore: University Park Press; 1977. p. 167–83.

    Google Scholar 

  67. Jiménez-Heffernan JA, et al. Peritoneal inflammation and fibrosis in peritoneal dialysis. In: Esbrit P, Alvarez-Arroyo M, editors. Inflammation and chronic disease. Trivandrum: Transworld Research Network; 2006. p. 89–102.

    Google Scholar 

  68. Jiménez-Heffernan JA, Aguilera A, Aroeira LS, Lara-Pezzi E, Bajo MA, del Peso G, et al. Immunohistochemical characterization of fibroblast subpopulations in normal peritoneal tissue and in peritoneal dialysis-induced fibrosis. Virchows Arch. 2004;444(3):247–56.

    Article  PubMed  Google Scholar 

  69. Aiba S, Tabata N, Ohtani H, Tagami H. CD34+ spindle-shaped cells selectively disappear from the skin lesion of scleroderma. Arch Dermatol. 1994;130(5):593–7.

    Article  CAS  PubMed  Google Scholar 

  70. Comper WD, Laurent TC. Physiological function of connective tissue polysaccharides. Physiol Rev. 1978;58(1):255–315.

    Article  CAS  PubMed  Google Scholar 

  71. Jiménez-Heffernan JA. De la histología a la función: el peritoneo como membrane dializante y biológicamente active. In: Motenegro J, et al., editors. Tratado de Diálisis Peritoneal. Barcelona: Elsevier; 2016. p. 23–36.

    Google Scholar 

  72. Flessner MF. The importance of the interstitium in peritoneal transport. Perit Dial Int. 1996;16(Suppl 1):S76–9.

    Article  PubMed  Google Scholar 

  73. Lai-Fook SJ, Brown LV. Effects of electric charge on hydraulic conductivity of pulmonary interstitium. J Appl Physiol (1985). 1991;70(5):1928–32.

    Article  CAS  PubMed  Google Scholar 

  74. Gilchrist SA, Parker JC. Exclusion of charged macromolecules in the pulmonary interstitium. Microvasc Res. 1985;30(1):88–98.

    Article  CAS  PubMed  Google Scholar 

  75. Haljamae H. Anatomy of the interstitial tissue. Lymphology. 1978;11(4):128–32.

    CAS  PubMed  Google Scholar 

  76. Parker JC, Gilchrist S, Cartledge JT. Plasma-lymph exchange and interstitial distribution volumes of charged macromolecules in the lung. J Appl Physiol (1985). 1985;59(4):1128–36.

    Article  CAS  PubMed  Google Scholar 

  77. Guyton AC. A concept of negative interstitial pressure based on pressures in implanted perforated capsules. Circ Res. 1963;12:399–414.

    Article  CAS  PubMed  Google Scholar 

  78. Scholander PF, Hargens AR, Miller SL. Negative pressure in the interstitial fluid of animals. Fluid tensions are spectacular in plants; in animals they are elusively small, but just as vital. Science. 1968;161(3839):321–8.

    Article  CAS  PubMed  Google Scholar 

  79. Aukland K, Reed RK. Interstitial-lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev. 1993;73(1):1–78.

    Article  CAS  PubMed  Google Scholar 

  80. Rutili G, Arfors KE. Protein concentration in interstitial and lymphatic fluids from the subcutaneous tissue. Acta Physiol Scand. 1977;99(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  81. Rutili G, Kvietys P, Martin D, Parker JC, Taylor AE. Increased pulmonary microvasuclar permeability induced by alpha-naphthylthiourea. J Appl Physiol Respir Environ Exerc Physiol. 1982;52(5):1316–23.

    CAS  PubMed  Google Scholar 

  82. Flessner MF. Peritoneal transport physiology: insights from basic research. J Am Soc Nephrol. 1991;2(2):122–35.

    Article  CAS  PubMed  Google Scholar 

  83. Gotloib L. Hemodynamic effects of increasing intra-abdominal pressure in peritoneal dialysis. Perit Dial Bull. 1981;1:41–2.

    Article  Google Scholar 

  84. Flessner MF, Schwab A. Pressure threshold for fluid loss from the peritoneal cavity. Am J Phys. 1996;270(2 Pt 2):F377–90.

    CAS  Google Scholar 

  85. Ross M, Pawlina W. Chapter 13: Cardiovascular system. In: Histology: a text and atlas: with correlated cell and molecular biology. 7th ed. Barcelona: Wolters Kluwer; 2016. p. 411–27.

    Google Scholar 

  86. Majno G. Section II – Circulation. In: Ultrastructure of the vascular membrane. Handbook of physiology, vol. III. Washington, DC: American Physiological Society; 1965. p. 2293–375.

    Google Scholar 

  87. Majno G, Palade GE, Schoefl GI. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961;11:607–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Honda K, Nitta K, Horita S, Yumura W, Nihei H. Morphological changes in the peritoneal vasculature of patients on CAPD with ultrafiltration failure. Nephron. 1996;72(2):171–6.

    Article  CAS  PubMed  Google Scholar 

  89. Williams JD, Craig KJ, Topley N, Von Ruhland C, Fallon M, Newman GR, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol. 2002;13(2):470–9.

    Article  PubMed  Google Scholar 

  90. Honda K, Oda H. Pathology of encapsulating peritoneal sclerosis. Perit Dial Int. 2005;25(Suppl 4):S19–29.

    Article  PubMed  Google Scholar 

  91. Honda K, Hamada C, Nakayama M, Miyazaki M, Sherif AM, Harada T, et al. Impact of uremia, diabetes, and peritoneal dialysis itself on the pathogenesis of peritoneal sclerosis: a quantitative study of peritoneal membrane morphology. Clin J Am Soc Nephrol. 2008;3(3):720–8.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Ross M, Pawlina W. Chapter 5: Epithelial tissue. In: Histology: a text and atlas: with correlated cell and molecular biology. 7th ed. Barcelona: Wolters Kluwer; 2016. p. 120–33.

    Google Scholar 

  93. Niemelä H, Elima K, Henttinen T, Irjala H, Salmi M, Jalkanen S. Molecular identification of PAL-E, a widely used endothelial-cell marker. Blood. 2005;106(10):3405–9.

    Article  PubMed  Google Scholar 

  94. Rippe B, Davies S. Permeability of peritoneal and glomerular capillaries: what are the differences according to pore theory? Perit Dial Int. 2011;31(3):249–58.

    Article  PubMed  Google Scholar 

  95. Gotloib L, Shustak A, Jaichenko J. Fenestrated capillaries in mice submesothelial mesenteric microvasculature. Int J Artif Organs. 1989;12(1):20–4.

    Article  CAS  PubMed  Google Scholar 

  96. Gotloib L, Shostak A. In search of a role for submesothelial fenestrated capillaries. Perit Dial Int. 1993;13(2):98–102.

    Article  CAS  PubMed  Google Scholar 

  97. Gotloib L, Shustak A, Bar-Sella P, Eiali V. Fenestrated capillaries in human parietal and rabbit diaphragmatic peritoneum. Nephron. 1985;41(2):200–2.

    Article  CAS  PubMed  Google Scholar 

  98. Friederici HH. The tridimensional ultrastructure of fenestrated capillaries. J Ultrastruct Res. 1968;23(5):444–56.

    Article  CAS  PubMed  Google Scholar 

  99. Rhodin JA. The diaphragm of capillary endothelial fenestrations. J Ultrastruct Res. 1962;6:171–85.

    Article  CAS  PubMed  Google Scholar 

  100. Lombardi T, Montesano R, Furie MB, Silverstein SC, Orci L. In vitro modulation of endothelial fenestrae: opposing effects of retinoic acid and transforming growth factor beta. J Cell Sci. 1988;91(Pt 2):313–8.

    Article  CAS  PubMed  Google Scholar 

  101. Wolff J. Ultrastructure of the terminal vascular bed as related to function. In: Kaley G, Altura B, editors. Microcirculation. Baltimore: University Park Press; 1977. p. 95–130.

    Google Scholar 

  102. Kitchens CS, Weiss L. Ultrastructural changes of endothelium associated with thrombocytopenia. Blood. 1975;46(4):567–78.

    Article  CAS  PubMed  Google Scholar 

  103. Horiuchi T, Weller PF. Expression of vascular endothelial growth factor by human eosinophils: upregulation by granulocyte macrophage colony-stimulating factor and interleukin-5. Am J Respir Cell Mol Biol. 1997;17(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  104. Collins PD, Connolly DT, Williams TJ. Characterization of the increase in vascular permeability induced by vascular permeability factor in vivo. Br J Pharmacol. 1993;109(1):195–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yeo KT, Wang HH, Nagy JA, Sioussat TM, Ledbetter SR, Hoogewerf AJ, et al. Vascular permeability factor (vascular endothelial growth factor) in Guinea pig and human tumor and inflammatory effusions. Cancer Res. 1993;53(12):2912–8.

    CAS  PubMed  Google Scholar 

  106. Taichman NS, Young S, Cruchley AT, Taylor P, Paleolog E. Human neutrophils secrete vascular endothelial growth factor. J Leukoc Biol. 1997;62(3):397–400.

    Article  CAS  PubMed  Google Scholar 

  107. Roberts WG, Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci. 1995;108(Pt 6):2369–79.

    Article  CAS  PubMed  Google Scholar 

  108. Roberts WG, Palade GE. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res. 1997;57(4):765–72.

    CAS  PubMed  Google Scholar 

  109. Simionescu M, Simionescu N, Palade G. Sulfated glycosaminoglycans are major components of the anionic sites of fenestral diaphragms in capillary endothelium. J Cell Biol. 1979;83:78a.

    Google Scholar 

  110. Milici A, L’Hernault N. Variation in the number of fenestrations and channels between fenestrated capillary beds. J Cell Biol. 1983;97:336.

    Google Scholar 

  111. Peters K, Milici A. High resolution scanning electron microscopy of the luminal surface of a fenestrated capillary endothelium. J Cell Biol. 1983;97:336a.

    Google Scholar 

  112. Bankston PW, Milici AJ. A survey of the binding of polycationic ferritin in several fenestrated capillary beds: indication of heterogeneity in the luminal glycocalyx of fenestral diaphragms. Microvasc Res. 1983;26(1):36–48.

    Article  CAS  PubMed  Google Scholar 

  113. Gotloib L, Shostak A, Jaichenko J, Galdi P, Fudin R. Anionic fixed charges in the fenestrated capillaries of the mouse mesentery. Nephron. 1990;55(4):419–22.

    Article  CAS  PubMed  Google Scholar 

  114. Simionescu M, Simionescu N, Palade GE. Preferential distribution of anionic sites on the basement membrane and the abluminal aspect of the endothelium in fenestrated capillaries. J Cell Biol. 1982;95(2 Pt 1):425–34.

    Article  CAS  PubMed  Google Scholar 

  115. Renkin EM. Multiple pathways of capillary permeability. Circ Res. 1977;41(6):735–43.

    Article  CAS  PubMed  Google Scholar 

  116. Charonis AS, Wissig SL. Anionic sites in basement membranes. Differences in their electrostatic properties in continuous and fenestrated capillaries. Microvasc Res. 1983;25(3):265–85.

    Article  CAS  PubMed  Google Scholar 

  117. Renkin EM. Cellular and intercellular transport pathways in exchange vessels. Am Rev Respir Dis. 1992;146(5 Pt 2):S28–31.

    Article  CAS  PubMed  Google Scholar 

  118. Palade GE. Transport in quanta across the endothelium of blood capillaries. Anat Rec. 1960;116:254.

    Google Scholar 

  119. Stan R. Structure of caveolae. Biochim Biophys Acta. 2005;1746:334–48.

    Article  CAS  PubMed  Google Scholar 

  120. Simionescu M, Simionescu N, Palade GE. Morphometric data on the endothelium of blood capillaries. J Cell Biol. 1974;60(1):128–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Petersen OW, van Deurs B. Serial-section analysis of coated pits and vesicles involved in adsorptive pinocytosis in cultured fibroblasts. J Cell Biol. 1983;96(1):277–81.

    Article  CAS  PubMed  Google Scholar 

  122. Ross M, Pawlina W. Chapter 2: Cell cytoplasm. In: Histology: a text and atlas: with correlated cell and molecular biology. 7th ed. Barcelona: Wolters Kluwer; 2016. p. 31–4.

    Google Scholar 

  123. Nagy JA, Benjamin L, Zeng H, Dvorak AM, Dvorak HF. Vascular permeability, vascular hyperpermeability and angiogenesis. Angiogenesis. 2008;11(2):109–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol. 1963;17:375–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Simionescu M, Simionescu N, Palade GE. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol. 1975;67(3):863–85.

    Article  CAS  PubMed  Google Scholar 

  126. Thorgeirsson G, Robertson AJ. The vascular endothelium. Pathobiologic significance. Am J Pathol. 1978;95:801–48.

    Google Scholar 

  127. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123(6 Pt 2):1777–88.

    Article  CAS  PubMed  Google Scholar 

  128. Hirase T, Staddon JM, Saitou M, Ando-Akatsuka Y, Itoh M, Furuse M, et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci. 1997;110(Pt 14):1603–13.

    Article  CAS  PubMed  Google Scholar 

  129. Balda MS, Anderson JM. Two classes of tight junctions are revealed by ZO-1 isoforms. Am J Phys. 1993;264(4 Pt 1):C918–24.

    Article  CAS  Google Scholar 

  130. Mitic LL, Anderson JM. Molecular architecture of tight junctions. Annu Rev Physiol. 1998;60:121–42.

    Article  CAS  PubMed  Google Scholar 

  131. Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci. 2008;121(Pt 13):2115–22.

    Article  CAS  PubMed  Google Scholar 

  132. Komarova YA, Kruse K, Mehta D, Malik AB. Protein interactions at endothelial junctions and signaling mechanisms regulating endothelial permeability. Circ Res. 2017;120(1):179–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Okamoto T, Suzuki K. The role of gap junction-mediated endothelial cell-cell interaction in the crosstalk between inflammation and blood coagulation. Int J Mol Sci. 2017;18(11):2254 https://doi.org/10.3390/ijms18112254.

  134. Ryan GB, Grobety J, Majno G. Mesothelial injury and recovery. Am J Pathol. 1973;71(1):93–112.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gabbiani G, Badonnel MC, Majno G. Intra-arterial injections of histamine, serotonin, or bradykinin: a topographic study of vascular leakage. Proc Soc Exp Biol Med. 1970;135(2):447–52.

    Article  CAS  PubMed  Google Scholar 

  136. Ryan GB, Majno G. Acute inflammation. A review. Am J Pathol. 1977;86(1):183–276.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Joris I, Majno G, Corey EJ, Lewis RA. The mechanism of vascular leakage induced by leukotriene E4. Endothelial contraction. Am J Pathol. 1987;126(1):19–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Gardner TW, Lesher T, Khin S, Vu C, Barber AJ, Brennan WA Jr. Histamine reduces ZO-1 tight-junction protein expression in cultured retinal microvascular endothelial cells. Biochem J. 1996;320(Pt 3):717–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kevil CG, Payne DK, Mire E, Alexander JS. Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem. 1998;273(24):15099–103.

    Article  CAS  PubMed  Google Scholar 

  140. Predescu D, Palade GE. Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am J Phys. 1993;265(2 Pt 2):H725–33.

    CAS  Google Scholar 

  141. Esser S, Wolburg K, Wolburg H, Breier G, Kurzchalia T, Risau W. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol. 1998;140(4):947–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Feng D, Nagy JA, Hipp J, Pyne K, Dvorak HF, Dvorak AM. Reinterpretation of endothelial cell gaps induced by vasoactive mediators in Guinea-pig, mouse and rat: many are transcellular pores. J Physiol. 1997;504(Pt 3):747–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Burns AR, Walker DC, Brown ES, Thurmon LT, Bowden RA, Keese CR, et al. Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J Immunol. 1997;159(6):2893–903.

    Article  CAS  PubMed  Google Scholar 

  144. Pino RM, Essner E, Pino LC. Location and chemical composition of anionic sites in Bruch’s membrane of the rat. J Histochem Cytochem. 1982;30(3):245–52.

    Article  CAS  PubMed  Google Scholar 

  145. Kanwar YS, Rosenzweig LJ, Kerjaschki DI. Glycosaminoglycans of the glomerular basement membrane in normal and nephrotic states. Ren Physiol. 1981;4(2–3):121–30.

    CAS  PubMed  Google Scholar 

  146. Kitano Y, Yoshikawa N, Nakamura H. Glomerular anionic sites in minimal change nephrotic syndrome and focal segmental glomerulosclerosis. Clin Nephrol. 1993;40(4):199–204.

    CAS  PubMed  Google Scholar 

  147. Rosenzweig LJ, Kanwar YS. Removal of sulfated (heparan sulfate) or nonsulfated (hyaluronic acid) glycosaminoglycans results in increased permeability of the glomerular basement membrane to 125I-bovine serum albumin. Lab Investig. 1982;47(2):177–84.

    CAS  PubMed  Google Scholar 

  148. Wu VY, Wilson B, Cohen MP. Disturbances in glomerular basement membrane glycosaminoglycans in experimental diabetes. Diabetes. 1987;36(6):679–83.

    Article  CAS  PubMed  Google Scholar 

  149. van den Born J, van Kraats AA, Bakker MA, Assmann KJ, Dijkman HB, van der Laak JA, ., et al., Reduction of heparan sulphate-associated anionic sites in the glomerular basement membrane of rats with streptozotocin-induced diabetic nephropathy. Diabetologia, 1995. 38(10): p. 1169–1175.

    Article  PubMed  Google Scholar 

  150. Galdi P, Shostak A, Jaichenko J, Fudin R, Gotloib L. Protamine sulfate induces enhanced peritoneal permeability to proteins. Nephron. 1991;57(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  151. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454(3):345–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dane MJ, van den Berg BM, Lee DH, Boels MG, Tiemeier GL, Avramut MC, et al. A microscopic view on the renal endothelial glycocalyx. Am J Physiol Renal Physiol. 2015;308(9):F956–66.

    Article  CAS  PubMed  Google Scholar 

  153. Mitra R, O’Neil GL, Harding IC, Cheng MJ, Mensah SA, Ebong EE. Glycocalyx in atherosclerosis-relevant endothelium function and as a therapeutic target. Curr Atheroscler Rep. 2017;19(12):63.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Song JW, Zullo J, Lipphardt M, Dragovich M, Zhang FX, Fu B, Goligorsky MS. Endothelial glycocalyx-the battleground for complications of sepsis and kidney injury. Nephrol Dial Transplant. 2018;33(2):203–11.

    Article  PubMed  Google Scholar 

  155. Dogne S, Flamion B, Caron N. Endothelial glycocalyx as a shield against diabetic vascular complications: involvement of hyaluronan and hyaluronidases. Arterioscler Thromb Vasc Biol. 2018;38(7):1427–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. McDonald B, Kubes P. Interactions between CD44 and hyaluronan in leukocyte trafficking. Front Immunol. 2015;6:68.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Martín-Villar E, Fernández-Muñoz B, Parsons M, Yurrita MM, Megías D, Pérez-Gómez E, et al. Podoplanin associates with CD44 to promote directional cell migration. Mol Biol Cell. 2010;21(24):4387–99.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Vernier RL, Steffes MW, Sisson-Ross S, Mauer SM. Heparan sulfate proteoglycan in the glomerular basement membrane in type 1 diabetes mellitus. Kidney Int. 1992;41(4):1070–80.

    Article  CAS  PubMed  Google Scholar 

  159. Vernier RL, Klein DJ, Sisson SP, Mahan JD, Oegema TR, Brown DM. Heparan sulfate–rich anionic sites in the human glomerular basement membrane. Decreased concentration in congenital nephrotic syndrome. N Engl J Med. 1983;309(17):1001–9.

    Article  CAS  PubMed  Google Scholar 

  160. Van den Heuvel LP, Van den Born J, Jalanko H, Schröder CH, Veerkamp JH, Assmann KJ, et al. The glycosaminoglycan content of renal basement membranes in the congenital nephrotic syndrome of the Finnish type. Pediatr Nephrol. 1992;6(1):10–5.

    Article  PubMed  Google Scholar 

  161. Washizawa K, Kasai S, Mori T, Komiyama A, Shigematsu H. Ultrastructural alteration of glomerular anionic sites in nephrotic patients. Pediatr Nephrol. 1993;7(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  162. Ramjee G, Coovadia HM, Adhikari M. Direct and indirect tests of pore size and charge selectivity in nephrotic syndrome. J Lab Clin Med. 1996;127(2):195–9.

    Article  CAS  PubMed  Google Scholar 

  163. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, et al. Aquaporin water channels–from atomic structure to clinical medicine. J Physiol. 2002;542(Pt 1):3–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Devuyst O, Rippe B. Water transport across the peritoneal membrane. Kidney Int. 2013;85(4):750–8.

    Article  PubMed  Google Scholar 

  165. Pannekeet MM, Mulder JB, Weening JJ, Struijk DG, Zweers MM, Krediet RT. Demonstration of aquaporin-CHIP in peritoneal tissue of uremic and CAPD patients. Perit Dial Int. 1996;16(Suppl 1):S54–7.

    Article  PubMed  Google Scholar 

  166. Devuyst O, Nielsen S, Cosyns JP, Smith BL, Agre P, Squifflet JP, et al. Aquaporin-1 and endothelial nitric oxide synthase expression in capillary endothelia of human peritoneum. Am J Phys. 1998;275(1):H234–42.

    CAS  Google Scholar 

  167. Schoenicke G, Diamant R, Donner A, Roehrborn A, Grabensee B, Plum J. Histochemical distribution and expression of aquaporin 1 in the peritoneum of patients undergoing peritoneal dialysis: relation to peritoneal transport. Am J Kidney Dis. 2004;44(1):146–54.

    Article  CAS  PubMed  Google Scholar 

  168. Carlsson O, Nielsen S, Zakaria el-R, Rippe B. In vivo inhibition of transcellular water channels (aquaporin-1) during acute peritoneal dialysis in rats. Am J Physiol. 1996;271(6 Pt 2):H2254–62.

    Google Scholar 

  169. Yang B, Folkesson HG, Yang J, Matthay MA, Ma T, Verkman AS. Reduced osmotic water permeability of the peritoneal barrier in aquaporin-1 knockout mice. Am J Phys. 1999;276(1):C76–81.

    Article  CAS  Google Scholar 

  170. Ni J, Verbavatz JM, Rippe A, Boisdé I, Moulin P, Rippe B, Verkman AS, Devuyst O. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney Int. 2006;69(9):1518–25.

    Article  CAS  PubMed  Google Scholar 

  171. Goffin E, Combet S, Jamar F, Cosyns JP, Devuyst O. Expression of aquaporin-1 in a long-term peritoneal dialysis patient with impaired transcellular water transport. Am J Kidney Dis. 1999;33(2):383–8.

    Article  CAS  PubMed  Google Scholar 

  172. Ikomi F, Hunt J, Hanna G, Schmid-Schönbein GW. Interstitial fluid, plasma protein, colloid, and leukocyte uptake into initial lymphatics. J Appl Physiol (1985). 1996;81(5):2060–7.

    Article  CAS  PubMed  Google Scholar 

  173. Rutili G, Parker JC, Taylor AE. Fluid balance in ANTU-injured lungs during crystalloid and colloid infusions. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(4):993–8.

    CAS  PubMed  Google Scholar 

  174. Drake RE, Gabel JC. Abdominal lymph flow response to intraperitoneal fluid in awake sheep. Lymphology. 1991;24(2):77–81.

    CAS  PubMed  Google Scholar 

  175. Rhodin JA, Sue SL. Combined intravital microscopy and electron microscopy of the blind beginnings of the mesenteric lymphatic capillaries of the rat mesentery. A preliminary report. Acta Physiol Scand Suppl. 1979;463:51–8.

    CAS  PubMed  Google Scholar 

  176. Nielsen S, Smith BL, Christensen EI, Agre P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A. 1993;90(15):7275–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Hargens AR, Zweifach BW. Contractile stimuli in collecting lymph vessels. Am J Phys. 1977;233(1):H57–65.

    CAS  Google Scholar 

  178. Horstmann E. Anatomie und Physiologie des lymphgefa B systems im bauchraum. In: Bartelheimer H, Heising N, editors. Actuelle Gastroenterologie. Stuttgart: Verh, Thieme; 1968. p. 1.

    Google Scholar 

  179. Ohhashi T, Azuma T, Sakaguchi M. Active and passive mechanical characteristics of bovine mesenteric lymphatics. Am J Phys. 1980;239(1):H88–95.

    CAS  Google Scholar 

  180. Watanabe N, Kawai Y, Ohhashi T. Demonstration of both beta 1- and beta 2-adrenoceptors mediating negative chronotropic effects on spontaneous activity in isolated bovine mesenteric lymphatics. Microvasc Res. 1990;39(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  181. Ohhashi T, Azuma T. Sympathetic effects on spontaneous activity in bovine mesenteric lymphatics. Am J Phys. 1984;247(4 Pt 2):H610–5.

    CAS  Google Scholar 

  182. Ohhashi T, Azuma T. Pre- and postjunctional alpha-adrenoceptors at sympathetic neuroeffector junction in bovine mesenteric lymphatics. Microvasc Res. 1986;31(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  183. Watanabe N, Kawai Y, Ohhashi T. Dual effects of histamine on spontaneous activity in isolated bovine mesenteric lymphatics. Microvasc Res. 1988;36(3):239–49.

    Article  CAS  PubMed  Google Scholar 

  184. Ferguson MK, Shahinian HK, Michelassi F. Lymphatic smooth muscle responses to leukotrienes, histamine and platelet activating factor. J Surg Res. 1988;44(2):172–7.

    Article  CAS  PubMed  Google Scholar 

  185. Ohhashi T, Kawai Y, Azuma T. The response of lymphatic smooth muscles to vasoactive substances. Pflugers Arch. 1978;375(2):183–8.

    Article  CAS  PubMed  Google Scholar 

  186. Azuma T, Ohhashi T, Roddie IC. Bradykinin-induced contractions of bovine mesenteric lymphatics. J Physiol. 1983;342:217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ohhashi T, Olschowka JA, Jacobowitz DM. Vasoactive intestinal peptide inhibitory innervation in bovine mesenteric lymphatics. A histochemical and pharmacological study. Circ Res. 1983;53(4):535–8.

    Article  CAS  PubMed  Google Scholar 

  188. Bone RC. The pathogenesis of sepsis. Ann Intern Med. 1991;115(6):457–69.

    Article  CAS  PubMed  Google Scholar 

  189. Schmid-Schonbein GW. Microlymphatics and lymph flow. Physiol Rev. 1990;70(4):987–1028.

    Article  CAS  PubMed  Google Scholar 

  190. Zweifach BW, Prather JW. Micromanipulation of pressure in terminal lymphatics in the mesentery. Am J Phys. 1975;228(5):1326–35.

    Article  CAS  Google Scholar 

  191. Abu-Hijleh MF, Habbal OA, Moqattash ST. The role of the diaphragm in lymphatic absorption from the peritoneal cavity. J Anat. 1995;186(Pt 3):453–67.

    PubMed  PubMed Central  Google Scholar 

  192. Crone C. Exchange of molecules between plasma, interstitial tissue and lymph. Pflugers Arch. 1972;Suppl:65–79.

    Article  Google Scholar 

  193. Hauck G. The connective tissue space in view of the lymphology. Experientia. 1982;38(9):1121–2.

    Article  CAS  PubMed  Google Scholar 

  194. Casley-Smith J. Lymph and lymphatics. In: Kaley G, Altura B, editors. Microcirculation, vol. 4. Baltimore: University Park Press; 1981. p. 423.

    Google Scholar 

  195. Schmid-Schonbein GW. Mechanisms causing initial lymphatics to expand and compress to promote lymph flow. Arch Histol Cytol. 1990;53(Suppl):107–14.

    Article  PubMed  Google Scholar 

  196. Leak LV, Burke JF. Fine structure of the lymphatic capillary and the adjoining connective tissue area. Am J Anat. 1966;118(3):785–809.

    Article  CAS  PubMed  Google Scholar 

  197. Leak LV, Burke JF. Electron microscopic study of lymphatic capillaries in the removal of connective tissue fluids and particulate substances. Lymphology. 1968;1(2):39–52.

    CAS  PubMed  Google Scholar 

  198. Taylor AE. The lymphatic edema safety factor: the role of edema dependent lymphatic factors (EDLF). Lymphology. 1990;23(3):111–23.

    CAS  PubMed  Google Scholar 

  199. Gerli R, Ibba L, Fruschelli C. Ultrastructural cytochemistry of anchoring filaments of human lymphatic capillaries and their relation to elastic fibers. Lymphology. 1991;24(3):105–12.

    CAS  PubMed  Google Scholar 

  200. Hogan RD, Unthank JL. The initial lymphatics as sensors of interstitial fluid volume. Microvasc Res. 1986;31(3):317–24.

    Article  CAS  PubMed  Google Scholar 

  201. Wayland H, Silberberg A. Blood to lymph transport. Microvasc Res. 1978;15(3):367–74.

    Article  CAS  PubMed  Google Scholar 

  202. Leak LV. The structure of lymphatic capillaries in lymph formation. Fed Proc. 1976;35(8):1863–71.

    CAS  PubMed  Google Scholar 

  203. McCallum W. On the mechanisms of absorption of granular material from the peritoneum. Bull Johns Hopkins Hosp. 1903;14:105–15.

    Google Scholar 

  204. Leak LV, Rahil K. Permeability of the diaphragmatic mesothelium: the ultrastructural basis for “stomata”. Am J Anat. 1978;151(4):557–93.

    Article  CAS  PubMed  Google Scholar 

  205. French JE, Florey HW, Morris B. The absorption of particles by the lymphatics of the diaphragm. Q J Exp Physiol Cogn Med Sci. 1960;45:88–103.

    CAS  PubMed  Google Scholar 

  206. Simer P. Omental lymphatics in man. Anat Rec. 1935;63:253–62.

    Article  Google Scholar 

  207. Starling EH, Tubby AH. On absorption from and secretion into the serous cavities. J Physiol. 1894;16(1–2):140–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19(4):312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Drinker C, Field M. The protein of mammalian lymph and the relation of lymph to tissue fluid. Am J Physiol Cell Physiol. 1931;97:32–45.

    Article  CAS  Google Scholar 

  210. Allen L, Vogt E. Mechanisms of lymphatic absorption from serous cavities. Am J Physiol Cell Physiol. 1937;119:776–82.

    Article  CAS  Google Scholar 

  211. Zink J, Greenway CV. Intraperitoneal pressure in formation and reabsorption of ascites in cats. Am J Phys. 1977;233(2):H185–90.

    CAS  Google Scholar 

  212. Zink J, Greenway CV. Control of ascites absorption in anesthetized cats: effects of intraperitoneal pressure, protein, and furosemide diuresis. Gastroenterology. 1977;73(5):1119–24.

    Article  CAS  PubMed  Google Scholar 

  213. Imholz AL, Koomen GC, Struijk DG, Arisz L, Krediet RT. Effect of an increased intraperitoneal pressure on fluid and solute transport during CAPD. Kidney Int. 1993;44(5):1078–85.

    Article  CAS  PubMed  Google Scholar 

  214. Durand PY, Chanliau J, Gamberoni J, Hestin D, Kessler M. Intraperitoneal pressure, peritoneal permeability and volume of ultrafiltration in CAPD. Adv Perit Dial. 1992;8:22–5.

    CAS  PubMed  Google Scholar 

  215. Gotloib L. Reduction of vital capacity due to increased intra-abdominal pressure during peritoneal dialysis. Perit Dial Bull. 1981;1:63–4.

    Article  Google Scholar 

  216. Flessner MF, Parker RJ, Sieber SM. Peritoneal lymphatic uptake of fibrinogen and erythrocytes in the rat. Am J Phys. 1983;244(1):H89–96.

    CAS  Google Scholar 

  217. Silk YN, Goumas WM, Douglass HO Jr, Huben RP. Chylous ascites and lymphocyst management by peritoneovenous shunt. Surgery. 1991;110(3):561–5.

    CAS  PubMed  Google Scholar 

  218. Flessner MF. Net ultrafiltration in peritoneal dialysis: role of direct fluid absorption into peritoneal tissue. Blood Purif. 1992;10(3–4):136–47.

    Article  CAS  PubMed  Google Scholar 

  219. Casley-Smith JR. A fine structural study of variations in protein concentration in lacteals during compression and relaxation. Lymphology. 1979;12(2):59–65.

    CAS  PubMed  Google Scholar 

  220. Von Recklinghausen F. Über Eiter-Bindegewebskörperchen. Virchows Arch Pathol Anat. 1863;28:157–66.

    Article  Google Scholar 

  221. Seifert E. Zur Biologie des menschlichen grossen Netzes. Arch Klin Chir. 1921;116:510–7.

    Google Scholar 

  222. Koten JW, den Otter W. Are omental milky spots an intestinal thymus? Lancet. 1991;338(8776):1189–90.

    Article  CAS  PubMed  Google Scholar 

  223. Garosi G, Di Paolo N. Recent advances in peritoneal morphology: the milky spots in peritoneal dialysis. Adv Perit Dial. 2001;17:25–8.

    CAS  PubMed  Google Scholar 

  224. Di Paolo N, Sacchi G, Garosi G, Sansoni E, Bargagli L, Ponzo P, et al. Omental milky spots and peritoneal dialysis--review and personal experience. Perit Dial Int. 2005;25(1):48–57.

    Article  PubMed  Google Scholar 

  225. Mateijsen MA, van der Wal AC, Hendriks PM, Zweers MM, Mulder J, Struijk DG, et al. Vascular and interstitial changes in the peritoneum of CAPD patients with peritoneal sclerosis. Perit Dial Int. 1999;19(6):517–25.

    Article  CAS  PubMed  Google Scholar 

  226. Plum J, Hermann S, Fusshöller A, Schoenicke G, Donner A, Röhrborn A, et al. Peritoneal sclerosis in peritoneal dialysis patients related to dialysis settings and peritoneal transport properties. Kidney Int Suppl. 2001;78:S42–7.

    Article  CAS  PubMed  Google Scholar 

  227. Jiménez-Heffernan JA, Perna C, Auxiliadora Bajo M, Luz Picazo M, Del Peso G, Aroeira L, et al. Tissue distribution of hyalinazing vasculopathy lesions in peritoneal dialysis patients: an autopsy study. Pathol Res Pract. 2008;204(8):563–7.

    Article  PubMed  Google Scholar 

  228. Gotloib L, Bar Sella P, Shostak A. Reduplicated basal lamina of small venules and mesothelium of human parietal peritoneum. Perit Dial Bull. 1985;5:212–5.

    Article  Google Scholar 

  229. Mizumasa T, Hirakata H, Kuroki Y, Katafuchi R, Yotsueda H, Mitsuiki K, et al. Diabetes influences peritoneal morphology in uremic patients at the initiation of peritoneal dialysis. Perit Dial Int. 2013;33(2):175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Selgas R, Bajo MA, Cirugeda A, del Peso G, Valdés J, Castro MJ, et al. Ultrafiltration and small solute transport at initiation of PD: questioning the paradigm of peritoneal function. Perit Dial Int. 2005;25(1):68–76.

    Article  CAS  PubMed  Google Scholar 

  231. Rumpsfeld M, McDonald SP, Purdie DM, Collins J, Johnson DW. Predictors of baseline peritoneal transport status in Australian and New Zealand peritoneal dialysis patients. Am J Kidney Dis. 2004;43(3):492–501.

    Article  PubMed  Google Scholar 

  232. Gillerot G, Goffin E, Michel C, Evenepoel P, Biesen WV, Tintillier M, et al. Genetic and clinical factors influence the baseline permeability of the peritoneal membrane. Kidney Int. 2005;67(6):2477–87.

    Article  PubMed  Google Scholar 

  233. Churchill DN, Thorpe KE, Nolph KD, Keshaviah PR, Oreopoulos DG, Pagé D. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. The Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1998;9(7):1285–92.

    Article  CAS  PubMed  Google Scholar 

  234. Clerbaux G, Francart J, Wallemacq P, Robert A, Goffin E. Evaluation of peritoneal transport properties at onset of peritoneal dialysis and longitudinal follow-up. Nephrol Dial Transplant. 2006;21(4):1032–9.

    Article  CAS  PubMed  Google Scholar 

  235. Rodrigues AS, Almeida M, Fonseca I, Martins M, Carvalho MJ, Silva F, et al. Peritoneal fast transport in incident peritoneal dialysis patients is not consistently associated with systemic inflammation. Nephrol Dial Transplant. 2006;21(3):763–9.

    Article  PubMed  Google Scholar 

  236. Reyes MJ, Bajo MA, Hevía C, Del Peso G, Ros S, de Miguel AG, et al. Inherent high peritoneal transport and ultrafiltration deficiency: their mid-term clinical relevance. Nephrol Dial Transplant. 2007;22(1):218–23.

    Article  PubMed  Google Scholar 

  237. Ding L, Shao X, Cao L, Fang W, Yan H, Huang J, et al. Possible role of IL-6 and TIE2 gene polymorphisms in predicting the initial high transport status in patients with peritoneal dialysis: an observational study. BMJ Open. 2016;6(10):e012967.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Bercovici B, Gallily R. The cytology of the human peritoneal fluid. Acta Cytol. 1978;22(3):194–7.

    CAS  PubMed  Google Scholar 

  239. Becker S, Halme J, Haskill S. Heterogeneity of human peritoneal macrophages: cytochemical and flow cytometric studies. J Reticuloendothel Soc. 1983;33(2):127–38.

    CAS  PubMed  Google Scholar 

  240. Northover BJ. The effect of various anti-inflammatory drugs on the accumulation of leucocytes in the peritoneal cavity of mice. J Pathol Bacteriol. 1964;88:332–5.

    Article  CAS  PubMed  Google Scholar 

  241. Rubin J, Rogers WA, Taylor HM, Everett ED, Prowant BF, Fruto LV, et al. Peritonitis during continuous ambulatory peritoneal dialysis. Ann Intern Med. 1980;92(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  242. Cichocki T, Hanicki Z, Sułowicz W, Smoleński O, Kopeć J, Zembala M. Output of peritoneal cells into peritoneal dialysate. Cytochemical and functional studies. Nephron. 1983;35(3):175–82.

    Article  CAS  PubMed  Google Scholar 

  243. Strippoli P, Coviello F, Orbello G, Mingrone G, DiMaggio A, Carelli AM, et al. First exchange neutrophilia is not always an index of peritonitis during CAPD. Adv Perit Dial. 1989;5:121–3.

    CAS  PubMed  Google Scholar 

  244. Kubicka U, Olszewski WL, Maldyk J, Wierzbicki Z, Orkiszewska A. Normal human immune peritoneal cells: phenotypic characteristics. Immunobiology. 1989;180(1):80–92.

    Article  CAS  PubMed  Google Scholar 

  245. Domagala W, Woyke S. Transmission and scanning electron microscopic studies of cells in effusions. Acta Cytol. 1975;19(3):214–24.

    CAS  PubMed  Google Scholar 

  246. Bewtra C, Greer KP. Ultrastructural studies of cells in body cavity effusions. Acta Cytol. 1985;29(3):226–38.

    CAS  PubMed  Google Scholar 

  247. Leak LV. Interaction of mesothelium to intraperitoneal stimulation. I. Aggregation of peritoneal cells. Lab Investig. 1983;48(4):479–91.

    CAS  PubMed  Google Scholar 

  248. Raftery AT. Regeneration of parietal and visceral peritoneum: an electron microscopical study. J Anat. 1973;115(Pt 3):375–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  249. Raftery AT. Mesothelial cells in peritoneal fluid. J Anat. 1973;115(Pt 2):237–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  250. Betjes MG, Bos HJ, Krediet RT, Arisz L. The mesothelial cells in CAPD effluent and their relation to peritonitis incidence. Perit Dial Int. 1991;11(1):22–6.

    Article  CAS  PubMed  Google Scholar 

  251. Fernandez de Castro M, Selgas R, Jimenez C, Auxiliadora Bajo M, Martinez V, Romero JR, et al. Cell populations present in the nocturnal peritoneal effluent of patients on continuous ambulatory peritoneal dialysis and their relationship with peritoneal function and incidence of peritonitis. Perit Dial Int. 1994;14(3):265–70.

    Article  CAS  PubMed  Google Scholar 

  252. Selgas R, Fernandez de Castro M, Viguer JM, Burgos E, Bajo MA, Carcamo C, et al. Transformed mesothelial cells in patients on CAPD for medium- to long-term periods. Perit Dial Int. 1995;15(8):305–11.

    Article  CAS  PubMed  Google Scholar 

  253. Slater ND, Cope GH, Raftery AT. Mesothelial hyperplasia in response to peritoneal dialysis fluid: a morphometric study in the rat. Nephron. 1991;58(4):466–71.

    Article  CAS  PubMed  Google Scholar 

  254. Gotloib L, Wajsbrot V, Shostak A, Kushnier R. Population analysis of mesothelium in situ and in vivo exposed to bicarbonate-buffered peritoneal dialysis fluid. Nephron. 1996;73(2):219–27.

    Article  CAS  PubMed  Google Scholar 

  255. Yamamoto T, Izumotani T, Otoshi T, Kim M. Morphological studies of mesothelial cells in CAPD effluent and their clinical significance. Am J Kidney Dis. 1998;32(6):946–52.

    Article  CAS  PubMed  Google Scholar 

  256. Izumotani T, Ishimura E, Yamamoto T, Otoshi T, Okuno S, Inaba M, , et al., Correlation between peritoneal mesothelial cell cytology and peritoneal histopathology with respect to prognosis in patients on continuous ambulatory peritoneal dialysis. Nephron, 2001. 89(1): p. 43–49.

    Article  CAS  PubMed  Google Scholar 

  257. Yamamoto T, Nagasue K, Okuno S, Yamakawa T. The role of peritoneal lavage and the prognostic significance of mesothelial cell area in preventing encapsulating peritoneal sclerosis. Perit Dial Int. 2010;30(3):343–52.

    Article  PubMed  Google Scholar 

  258. Venturoli D, Rippe B. Is there a price to pay for the simplicity of the three-pore model? Perit Dial Int. 2008;28(1):25–7.

    Article  PubMed  Google Scholar 

  259. Morelle J, Sow A, Hautem N, Bouzin C, Crott R, Devuyst O, et al. Interstitial fibrosis restricts osmotic water transport in encapsulating peritoneal sclerosis. J Am Soc Nephrol. 2015;26(10):2521–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Khanna R. Solute and water transport in peritoneal dialysis: a case-based primer. Am J Kidney Dis. 2017;69(3):461–72.

    Article  PubMed  Google Scholar 

  261. Rippe B, Oberg CM. Counterpoint: defending pore theory. Perit Dial Int. 2015;35(1):9–13.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21(7):1077–85.

    Article  CAS  PubMed  Google Scholar 

  263. Di Paolo N, Sacchi G, De Mia M, Gaggiotti E, Capotondo L, Rossi P, et al. Morphology of the peritoneal membrane during continuous ambulatory peritoneal dialysis. Nephron. 1986;44(3):204–11.

    Article  PubMed  Google Scholar 

  264. Lopez-Cabrera M. Mesenchymal conversion of mesothelial cells is a key event in the pathophysiology of the peritoneum during peritoneal dialysis. Adv Med. 2014;2014:473134. https://doi.org/10.1155/2014/473134. Epub 2014 Jan 23, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Aroeira LS, Aguilera A, Sánchez-Tomero JA, Bajo MA, del Peso G, Jiménez-Heffernan JA, et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol. 2007;18(7):2004–13.

    Article  CAS  PubMed  Google Scholar 

  266. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  267. Yáñez-Mó M, Lara-Pezzi E, Selgas R, Ramírez-Huesca M, Domínguez-Jiménez C, Jiménez-Heffernan JA, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003;348(5):403–13.

    Article  PubMed  Google Scholar 

  268. Del Peso G, Jimenez-Heffernan JA, Bajo MA, Hevia C, Aguilera A, Castro MJ, et al. Myofibroblastic differentiation in simple peritoneal sclerosis. Int J Artif Organs. 2005;28(2):135–40.

    Article  PubMed  Google Scholar 

  269. Del Peso G, Jiménez-Heffernan JA, Bajo MA, Aroeira LS, Aguilera A, Fernández-Perpén A, et al. Epithelial-to-mesenchymal transition of mesothelial cells is an early event during peritoneal dialysis and is associated with high peritoneal transport. Kidney Int Suppl. 2008;108:S26–33.

    Article  Google Scholar 

  270. Aroeira LS, Aguilera A, Selgas R, Ramírez-Huesca M, Pérez-Lozano ML, Cirugeda A, et al. Mesenchymal conversion of mesothelial cells as a mechanism responsible for high solute transport rate in peritoneal dialysis: role of vascular endothelial growth factor. Am J Kidney Dis. 2005;46(5):938–48.

    Article  CAS  PubMed  Google Scholar 

  271. Aroeira LS, Lara-Pezzi E, Loureiro J, Aguilera A, Ramírez-Huesca M, González-Mateo G, et al. Cyclooxygenase-2 mediates dialysate-induced alterations of the peritoneal membrane. J Am Soc Nephrol. 2009;20(3):582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Loureiro J, Aguilera A, Selgas R, Sandoval P, Albar-Vizcaíno P, Pérez-Lozano ML, et al. Blocking TGF-beta1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol. 2011;22(9):1682–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Mizutani M, Ito Y, Mizuno M, Nishimura H, Suzuki Y, Hattori R, et al. Connective tissue growth factor (CTGF/CCN2) is increased in peritoneal dialysis patients with high peritoneal solute transport rate. Am J Physiol Renal Physiol. 2010;298(3):F721–33.

    Article  CAS  PubMed  Google Scholar 

  274. Ruiz-Carpio V, Sandoval P, Aguilera A, Albar-Vizcaíno P, Perez-Lozano ML, González-Mateo GT, et al. Genomic reprograming analysis of the mesothelial to mesenchymal transition identifies biomarkers in peritoneal dialysis patients. Sci Rep. 2017;7:44941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Bajo MA, Pérez-Lozano ML, Albar-Vizcaino P, del Peso G, Castro MJ, Gonzalez-Mateo G, et al. Low-GDP peritoneal dialysis fluid (‘balance’) has less impact in vitro and ex vivo on epithelial-to-mesenchymal transition (EMT) of mesothelial cells than a standard fluid. Nephrol Dial Transplant. 2011;26(1):282–91.

    Article  CAS  PubMed  Google Scholar 

  276. Fernández-Perpén A, Pérez-Lozano ML, Bajo MA, Albar-Vizcaino P, Sandoval Correa P, del Peso G, et al. Influence of bicarbonate/low-GDP peritoneal dialysis fluid (BicaVera) on in vitro and ex vivo epithelial-to-mesenchymal transition of mesothelial cells. Perit Dial Int. 2012;32(3):292–304.

    Article  PubMed  PubMed Central  Google Scholar 

  277. del Peso G, Jiménez-Heffernan JA, Selgas R, Remón C, Ossorio M, Fernández-Perpén A, et al. Biocompatible dialysis solutions preserve peritoneal mesothelial cell and vessel wall integrity. A case-control study on human biopsies. Perit Dial Int. 2016;36(2):129–34.

    Article  PubMed  PubMed Central  Google Scholar 

  278. Sandoval P, Loureiro J, González-Mateo G, Pérez-Lozano ML, Maldonado-Rodríguez A, Sánchez-Tomero JA, et al. PPAR-gamma agonist rosiglitazone protects peritoneal membrane from dialysis fluid-induced damage. Lab Investig. 2010;90(10):1517–32.

    Article  CAS  PubMed  Google Scholar 

  279. González-Mateo GT, Fernández-Míllara V, Bellón T, Liappas G, Ruiz-Ortega M, López-Cabrera M, et al. Paricalcitol reduces peritoneal fibrosis in mice through the activation of regulatory T cells and reduction of IL-17 production. PLoS One. 2014;9(10):e108477.

    Article  PubMed  PubMed Central  Google Scholar 

  280. Loureiro J, Schilte M, Aguilera A, Albar-Vizcaíno P, Ramírez-Huesca M, Pérez-Lozano ML, et al. BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure. Nephrol Dial Transplant. 2010;25(4):1098–108.

    Article  CAS  PubMed  Google Scholar 

  281. Busnadiego O, Loureiro-Álvarez J, Sandoval P, Lagares D, Dotor J, Pérez-Lozano ML, et al. A pathogenetic role for endothelin-1 in peritoneal dialysis-associated fibrosis. J Am Soc Nephrol. 2015;26(1):173–82.

    Article  CAS  PubMed  Google Scholar 

  282. Strippoli R, Benedicto I, Pérez Lozano ML, Cerezo A, López-Cabrera M, del Pozo MA. Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/Snail1 pathway. Dis Model Mech. 2008;1(4–5):264–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Strippoli R, Benedicto I, Foronda M, Perez-Lozano ML, Sánchez-Perales S, López-Cabrera M, et al. p38 maintains E-cadherin expression by modulating TAK1-NF-kappa B during epithelial-to-mesenchymal transition. J Cell Sci. 2010;123(Pt 24):4321–31.

    Article  CAS  PubMed  Google Scholar 

  284. Strippoli R, Benedicto I, Perez Lozano ML, Pellinen T, Sandoval P, Lopez-Cabrera M, et al. Inhibition of transforming growth factor-activated kinase 1 (TAK1) blocks and reverses epithelial to mesenchymal transition of mesothelial cells. PLoS One. 2012;7(2):e31492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Aguilera A, Yáñez-Mo M, Selgas R, Sánchez-Madrid F, López-Cabrera M. Epithelial to mesenchymal transition as a triggering factor of peritoneal membrane fibrosis and angiogenesis in peritoneal dialysis patients. Curr Opin Investig Drugs. 2005;6(3):262–8.

    CAS  PubMed  Google Scholar 

  286. Bajo MA, del Peso G, Castro MA, Cirugeda A, Castro MJ, Olea T, et al. Pathogenic significance of hypertrophic mesothelial cells in peritoneal effluent and ex vivo culture. Adv Perit Dial. 2004;20:43–6.

    PubMed  Google Scholar 

  287. Gotloib L, Shostak A, Wajsbrot V. Detrimental effects of peritoneal dialysis solutions upon in vivo and in situ exposed mesothelium. Perit Dial Int. 1997;17(Suppl 2):S13–6.

    Article  PubMed  Google Scholar 

  288. Burton DG, Krizhanovsky V. Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci. 2014;71(22):4373–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705.

    Article  CAS  PubMed  Google Scholar 

  290. Cho JH, Do JY, Oh EJ, Ryu HM, Park SY, Kim SO, et al. Are ex vivo mesothelial cells representative of the in vivo transition from epithelial-to-mesenchymal cells in peritoneal membrane? Nephrol Dial Transplant. 2012;27(5):1768–79.

    Article  CAS  PubMed  Google Scholar 

  291. López-Cabrera M, Aguilera A, Aroeira LS, Ramírez-Huesca M, Pérez-Lozano ML, Jiménez-Heffernan JA, et al. Ex vivo analysis of dialysis effluent-derived mesothelial cells as an approach to unveiling the mechanism of peritoneal membrane failure. Perit Dial Int. 2006;26(1):26–34.

    Article  PubMed  Google Scholar 

  292. Ksiazek K, Korybalska K, Jörres A, Witowski J. Accelerated senescence of human peritoneal mesothelial cells exposed to high glucose: the role of TGF-beta1. Lab Investig. 2007;87(4):345–56.

    Article  CAS  PubMed  Google Scholar 

  293. Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Yang Y, Pan X, Lei W, Wang J, Song J. Transforming growth factor-beta1 induces epithelial-to-mesenchymal transition and apoptosis via a cell cycle-dependent mechanism. Oncogene. 2006;25(55):7235–44.

    Article  CAS  PubMed  Google Scholar 

  295. Di Paolo N, Garosi G. Peritoneal sclerosis. J Nephrol. 1999;12(6):347–61.

    PubMed  Google Scholar 

  296. Nomoto Y, Kawaguchi Y, Kubo H, Hirano H, Sakai S, Kurokawa K. Sclerosing encapsulating peritonitis in patients undergoing continuous ambulatory peritoneal dialysis: a report of the Japanese Sclerosing Encapsulating Peritonitis Study Group. Am J Kidney Dis. 1996;28(3):420–7.

    Article  CAS  PubMed  Google Scholar 

  297. Schneble F, Bonzel KE, Waldherr R, Bachmann S, Roth H, Schärer K. Peritoneal morphology in children treated by continuous ambulatory peritoneal dialysis. Pediatr Nephrol. 1992;6(6):542–6.

    Article  CAS  PubMed  Google Scholar 

  298. Garosi G, Di Paolo N. Pathophysiology and morphological clinical correlation in experimental and peritoneal dialysis-induced peritoneal sclerosis. Adv Perit Dial. 2000;16:204–7.

    CAS  PubMed  Google Scholar 

  299. Flessner MF. The effect of fibrosis on peritoneal transport. Contrib Nephrol. 2006;150:174–80.

    Article  PubMed  Google Scholar 

  300. Folkman J. Fundamental concepts of the angiogenic process. Curr Mol Med. 2003;3(7):643–51.

    Article  CAS  PubMed  Google Scholar 

  301. Díaz-Flores L, Gutiérrez R, García-Suárez MP, Sáez FJ, Gutiérrez E, Valladares F, et al. Morphofunctional basis of the different types of angiogenesis and formation of postnatal angiogenesis-related secondary structures. Histol Histopathol. 2017;32(12):1239–79.

    PubMed  Google Scholar 

  302. Asahara T, Isner JM. Endothelial progenitor cells for vascular regeneration. J Hematother Stem Cell Res. 2002;11(2):171–8.

    Article  PubMed  Google Scholar 

  303. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275(5302):964–7.

    Article  CAS  PubMed  Google Scholar 

  304. Aoki M, Yasutake M, Murohara T. Derivation of functional endothelial progenitor cells from human umbilical cord blood mononuclear cells isolated by a novel cell filtration device. Stem Cells. 2004;22(6):994–1002.

    Article  CAS  PubMed  Google Scholar 

  305. Muñoz-Chápuli R, Pérez-Pomares JM, Macías D, García-Garrido L, Carmona R, González M. Differentiation of hemangioblasts from embryonic mesothelial cells? A model on the origin of the vertebrate cardiovascular system. Differentiation. 1999;64(3):133–41.

    Article  PubMed  Google Scholar 

  306. Sekiguchi Y, Hamada C, Ro Y, Nakamoto H, Inaba M, Shimaoka T, et al. Differentiation of bone marrow-derived cells into regenerated mesothelial cells in peritoneal remodeling using a peritoneal fibrosis mouse model. J Artif Organs. 2012;15(3):272–82.

    Article  CAS  PubMed  Google Scholar 

  307. Wakabayashi K, Hamada C, Kanda R, Nakano T, Io H, Horikoshi S, Tomino Y. Adipose-derived mesenchymal stem cells transplantation facilitate experimental peritoneal fibrosis repair by suppressing epithelial-mesenchymal transition. J Nephrol. 2014;27(5):507–14.

    Article  CAS  PubMed  Google Scholar 

  308. Kim H, Mizuno M, Furuhashi K, Katsuno T, Ozaki T, Yasuda K, et al. Rat adipose tissue-derived stem cells attenuate peritoneal injuries in rat zymosan-induced peritonitis accompanied by complement activation. Cytotherapy. 2014;16(3):357–68.

    Article  CAS  PubMed  Google Scholar 

  309. Betz C, Lenard A, Belting HG, Affolter M. Cell behaviors and dynamics during angiogenesis. Development. 2016;143(13):2249–60.

    Article  CAS  PubMed  Google Scholar 

  310. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146(6):873–87.

    Article  CAS  PubMed  Google Scholar 

  311. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996;87(7):1171–80.

    Article  CAS  PubMed  Google Scholar 

  312. Hejtmancik JF, Sifers RN, Ward PA, Harris S, Mansfield T, Cox DW. Prenatal diagnosis of alpha 1-antitrypsin deficiency by restriction fragment length polymorphisms, and comparison with oligonucleotide probe analysis. Lancet. 1986;2(8510):767–70.

    Article  CAS  PubMed  Google Scholar 

  313. Inai T, Mancuso M, Hashizume H, Baffert F, Haskell A, Baluk P, et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol. 2004;165(1):35–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Fusshoeller A. Histomorphological and functional changes of the peritoneal membrane during long-term peritoneal dialysis. Pediatr Nephrol. 2008;23(1):19–25.

    Article  PubMed  Google Scholar 

  315. Zhang Z, Jiang N, Ni Z. Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis. Front Med. 2017;11(3):349–58.

    Article  PubMed  Google Scholar 

  316. Kawanishi K, Honda K, Tsukada M, Oda H, Nitta K. Neutral solution low in glucose degradation products is associated with less peritoneal fibrosis and vascular sclerosis in patients receiving peritoneal dialysis. Perit Dial Int. 2013;33(3):242–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Zweers MM, Struijk DG, Smit W, Krediet RT. Vascular endothelial growth factor in peritoneal dialysis: a longitudinal follow-up. J Lab Clin Med. 2001;137(2):125–32.

    Article  CAS  PubMed  Google Scholar 

  318. Mortier S, Faict D, Lameire NH, De Vriese AS. Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int. 2005;67(4):1559–65.

    Article  CAS  PubMed  Google Scholar 

  319. Kawanishi K, Honda K, Hamada C. Recommendations for pathological diagnosis on biopsy samples from peritoneal dialysis patients. Pleura Peritoneum. 2017;2(1):3–15.

    Article  PubMed  PubMed Central  Google Scholar 

  320. Stavenuiter AW, Schilte MN, Ter Wee PM, Beelen RH. Angiogenesis in peritoneal dialysis. Kidney Blood Press Res. 2011;34(4):245–52.

    Article  CAS  PubMed  Google Scholar 

  321. Margetts PJ, Kolb M, Galt T, Hoff CM, Shockley TR, Gauldie J. Gene transfer of transforming growth factor-beta1 to the rat peritoneum: effects on membrane function. J Am Soc Nephrol. 2001;12(10):2029–39.

    Article  CAS  PubMed  Google Scholar 

  322. De Vriese AS, Flyvbjerg A, Mortier S, Tilton RG, Lameire NH. Inhibition of the interaction of AGE-RAGE prevents hyperglycemia-induced fibrosis of the peritoneal membrane. J Am Soc Nephrol. 2003;14(8):2109–18.

    Article  PubMed  Google Scholar 

  323. Margetts PJ, Kolb M, Yu L, Hoff CM, Holmes CJ, Anthony DC, Gauldie J. Inflammatory cytokines, angiogenesis, and fibrosis in the rat peritoneum. Am J Pathol. 2002;160(6):2285–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Schwenger V, Morath C, Salava A, Amann K, Seregin Y, Deppisch R, et al. Damage to the peritoneal membrane by glucose degradation products is mediated by the receptor for advanced glycation end-products. J Am Soc Nephrol. 2006;17(1):199–207.

    Article  CAS  PubMed  Google Scholar 

  325. Io H, Hamada C, Ro Y, Ito Y, Hirahara I, Tomino Y. Morphologic changes of peritoneum and expression of VEGF in encapsulated peritoneal sclerosis rat models. Kidney Int. 2004;65(5):1927–36.

    Article  CAS  PubMed  Google Scholar 

  326. Honda K, Nitta K, Horita S, Yumura W, Nihei H, Nagai R, et al. Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrol Dial Transplant. 1999;14(6):1541–9.

    Article  CAS  PubMed  Google Scholar 

  327. Nishimura H, Ito Y, Mizuno M, Tanaka A, Morita Y, Maruyama S, et al. Mineralocorticoid receptor blockade ameliorates peritoneal fibrosis in new rat peritonitis model. Am J Physiol Renal Physiol. 2008;294(5):F1084–93.

    Article  CAS  PubMed  Google Scholar 

  328. Tawada M, Ito Y, Hamada C, Honda K, Mizuno M, Suzuki Y, et al. Vascular endothelial cell injury is an important factor in the development of encapsulating peritoneal sclerosis in long-term peritoneal dialysis patients. PLoS One. 2016;11(4):e0154644.

    Article  PubMed  PubMed Central  Google Scholar 

  329. Honda K, Nitta K, Horita S, Tsukada M, Itabashi M, Nihei H, et al. Histologic criteria for diagnosing encapsulating peritoneal sclerosis in continuous ambulatory peritoneal dialysis patients. Adv Perit Dial. 2003;19:169–75.

    PubMed  Google Scholar 

  330. Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437(7058):497–504.

    Article  CAS  PubMed  Google Scholar 

  331. Hotta Y, Kaneko K, Inuma J, Inami Y, Aruga S, Shimaoka T, et al. Establishment of a peritoneal mesothelial cell line from a transgenic rat harbouring the temperature-sensitive simian virus 40 large T-antigen gene. Nephrol Dial Transplant. 2010;25(6):1825–32.

    Article  CAS  PubMed  Google Scholar 

  332. Kim YL. Update on mechanisms of ultrafiltration failure. Perit Dial Int. 2009;29(Suppl 2):S123–7.

    Article  CAS  PubMed  Google Scholar 

  333. Ristimäki A, Narko K, Enholm B, Joukov V, Alitalo K. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem. 1998;273(14):8413–8.

    Article  PubMed  Google Scholar 

  334. Hamrah P, Chen L, Zhang Q, Dana MR. Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol. 2003;163(1):57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  335. Fusshöller A, zur Nieden S, Grabensee B, Plum J. Peritoneal fluid and solute transport: influence of treatment time, peritoneal dialysis modality, and peritonitis incidence. J Am Soc Nephrol. 2002;13(4):1055–60.

    Article  PubMed  Google Scholar 

  336. Smit W, Schouten N, van den Berg N, Langedijk MJ, Struijk DG, Krediet RT. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit Dial Int. 2004;24(6):562–70.

    Article  PubMed  Google Scholar 

  337. Kinashi H, Ito Y, Sun T, Katsuno T, Takei Y. Roles of the TGF-beta – VEGF-C pathway in fibrosis-related lymphangiogenesis. Int J Mol Sci. 2018;19(9):pii: E2487.

    Article  Google Scholar 

  338. Kinashi H, Ito Y, Mizuno M, Suzuki Y, Terabayashi T, Nagura F, et al. TGF-beta1 promotes lymphangiogenesis during peritoneal fibrosis. J Am Soc Nephrol. 2013;24(10):1627–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Di Paolo N, Sacchi G. Peritoneal vascular changes in continuous ambulatory peritoneal dialysis (CAPD): an in vivo model for the study of diabetic microangiopathy. Perit Dial Int. 1989;9(1):41–5.

    Article  PubMed  Google Scholar 

  340. Yamada K, Miyahara Y, Hamaguchi K, Nakayama M, Nakano H, Nozaki O, et al. Immunohistochemical study of human advanced glycosylation end-products (AGE) in chronic renal failure. Clin Nephrol. 1994;42(6):354–61.

    CAS  PubMed  Google Scholar 

  341. Nakayama M, Kawaguchi Y, Yamada K, Hasegawa T, Takazoe K, Katoh N, Hayakawa H, et al. Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD. Kidney Int. 1997;51(1):182–6.

    Article  CAS  PubMed  Google Scholar 

  342. Miyata T, Ueda Y, Yamada Y, Izuhara Y, Wada T, Jadoul M, et al. Accumulation of carbonyls accelerates the formation of pentosidine, an advanced glycation end product: carbonyl stress in uremia. J Am Soc Nephrol. 1998;9(12):2349–56.

    Article  CAS  PubMed  Google Scholar 

  343. Miyata T, Horie K, Ueda Y, Fujita Y, Izuhara Y, Hirano H, et al. Advanced glycation and lipidoxidation of the peritoneal membrane: respective roles of serum and peritoneal fluid reactive carbonyl compounds. Kidney Int. 2000;58(1):425–35.

    Article  CAS  PubMed  Google Scholar 

  344. Ayuzawa N, Ishibashi Y, Takazawa Y, Kume H, Fujita T. Peritoneal morphology after long-term peritoneal dialysis with biocompatible fluid: recent clinical practice in Japan. Perit Dial Int. 2012;32(2):159–67.

    Article  PubMed  PubMed Central  Google Scholar 

  345. Hamada C, Honda K, Kawanishi K, Nakamoto H, Ito Y, Sakurada T, et al. Morphological characteristics in peritoneum in patients with neutral peritoneal dialysis solution. J Artif Organs. 2015;18(3):243–50.

    Article  CAS  PubMed  Google Scholar 

  346. Inagi R, Miyata T, Yamamoto T, Suzuki D, Urakami K, Saito A, et al. Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis. FEBS Lett. 1999;463(3):260–4.

    Article  CAS  PubMed  Google Scholar 

  347. Zweers MM, de Waart DR, Smit W, Struijk DG, Krediet RT. Growth factors VEGF and TGF-beta1 in peritoneal dialysis. J Lab Clin Med. 1999;134(2):124–32.

    Article  CAS  PubMed  Google Scholar 

  348. De Vriese AS, Tilton RG, Stephan CC, Lameire NH. Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. J Am Soc Nephrol. 2001;12(8):1734–41.

    Article  PubMed  Google Scholar 

  349. Nakamura Y, Horii Y, Nishino T, Shiiki H, Sakaguchi Y, Kagoshima T, et al. Immunohistochemical localization of advanced glycosylation end products in coronary atheroma and cardiac tissue in diabetes mellitus. Am J Pathol. 1993;143(6):1649–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  350. Makino H, Shikata K, Hironaka K, Kushiro M, Yamasaki Y, Sugimoto H, et al. Ultrastructure of nonenzymatically glycated mesangial matrix in diabetic nephropathy. Kidney Int. 1995;48(2):517–26.

    Article  CAS  PubMed  Google Scholar 

  351. Nishino T, Horii Y, Shiiki H, Yamamoto H, Makita Z, Bucala R, Dohi K. Immunohistochemical detection of advanced glycosylation end products within the vascular lesions and glomeruli in diabetic nephropathy. Hum Pathol. 1995;26(3):308–13.

    Article  CAS  PubMed  Google Scholar 

  352. Gandhi VC, Humayun HM, Ing TS, Daugirdas JT, Jablokow VR, Iwatsuki S, et al. Sclerotic thickening of the peritoneal membrane in maintenance peritoneal dialysis patients. Arch Intern Med. 1980;140(9):1201–3.

    Article  CAS  PubMed  Google Scholar 

  353. Dobbie JW. Pathogenesis of peritoneal fibrosing syndromes (sclerosing peritonitis) in peritoneal dialysis. Perit Dial Int. 1992;12(1):14–27.

    Article  CAS  PubMed  Google Scholar 

  354. Kawaguchi Y, Kawanishi H, Mujais S, Topley N, Oreopoulos DG. Encapsulating peritoneal sclerosis: definition, etiology, diagnosis, and treatment. International Society for Peritoneal Dialysis Ad Hoc Committee on Ultrafiltration Management in Peritoneal Dialysis. Perit Dial Int. 2000;20(Suppl 4):S43–55.

    Article  PubMed  Google Scholar 

  355. Kawanishi H, Kawaguchi Y, Fukui H, Hara S, Imada A, Kubo H, et al. Encapsulating peritoneal sclerosis in Japan: a prospective, controlled, multicenter study. Am J Kidney Dis. 2004;44(4):729–37.

    Article  PubMed  Google Scholar 

  356. Honda K. Significance of new membrane formation in peritoneal biopsies of peritoneal dialysis patients: a case–control study. Ren Replace Ther. 2017;3:33.

    Article  Google Scholar 

  357. Braun N, Alscher DM, Fritz P, Edenhofer I, Kimmel M, Gaspert A, et al. Podoplanin-positive cells are a hallmark of encapsulating peritoneal sclerosis. Nephrol Dial Transplant. 2011;26(3):1033–41.

    Article  CAS  PubMed  Google Scholar 

  358. Braun N, Alscher MD, Fritz P, Latus J, Edenhofer I, Reimold F, et al. The spectrum of podoplanin expression in encapsulating peritoneal sclerosis. PLoS One. 2012;7(12):e53382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem. 2007;282(36):25993–6001.

    Article  CAS  PubMed  Google Scholar 

  360. Astarita JL, Acton SE, Turley SJ. Podoplanin: emerging functions in development, the immune system, and cancer. Front Immunol. 2012;3:283.

    Article  PubMed  PubMed Central  Google Scholar 

  361. Dobbie JW, Jasani MK. Role of imbalance of intracavity fibrin formation and removal in the pathogenesis of peritoneal lesions in CAPD. Perit Dial Int. 1997;17(2):121–4.

    Article  CAS  PubMed  Google Scholar 

  362. Patel P, West-Mays J, Kolb M, Rodrigues JC, Hoff CM, Margetts PJ. Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells. Matrix Biol. 2010;29(2):97–106.

    Article  CAS  PubMed  Google Scholar 

  363. Fang CC, Huang JW, Shyu RS, Yen CJ, Shiao CH, Chiang CK, et al. Fibrin-induced epithelial-to-mesenchymal transition of peritoneal mesothelial cells as a mechanism of peritoneal fibrosis: effects of pentoxifylline. PLoS One. 2012;7(9):e44765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  364. Hamada C, Nakamoto H, Suzuki Y. Morphologic characteristics of macroscopic peritoneal finding in patients with peritoneal dialysis. J Artif Organs. 2018;21(1):102–9.

    Article  PubMed  Google Scholar 

  365. Krediet RT, Zweers MM, van der Wal AC, Struijk DG. Neoangiogenesis in the peritoneal membrane. Perit Dial Int. 2000;20(Suppl 2):S19–25.

    Article  PubMed  Google Scholar 

  366. Yaginuma T, Yamamoto I, Yamamoto H, Mitome J, Tanno Y, Yokoyama K, et al. Increased lymphatic vessels in patients with encapsulating peritoneal sclerosis. Perit Dial Int. 2012;32(6):617–27.

    Article  PubMed  PubMed Central  Google Scholar 

  367. Abrahams AC, Habib SM, Dendooven A, Riser BL, van der Veer JW, Toorop RJ, et al. Patients with encapsulating peritoneal sclerosis have increased peritoneal expression of connective tissue growth factor (CCN2), transforming growth factor-beta1, and vascular endothelial growth factor. PLoS One. 2014;9(11):e112050.

    Article  PubMed  PubMed Central  Google Scholar 

  368. Lambie MR, Chess J, Summers AM, Williams PF, Topley N, Davies SJ, et al. Peritoneal inflammation precedes encapsulating peritoneal sclerosis: results from the GLOBAL Fluid Study. Nephrol Dial Transplant. 2016;31(3):480–6.

    Article  CAS  PubMed  Google Scholar 

  369. Alston H, Fan S, Nakayama M. Encapsulating peritoneal sclerosis. Semin Nephrol. 2017;37(1):93–102.

    Article  PubMed  Google Scholar 

  370. Danford CJ, Lin SC, Smith MP, Wolf JL. Encapsulating peritoneal sclerosis. World J Gastroenterol. 2018;24(28):3101–11.

    Article  PubMed  PubMed Central  Google Scholar 

  371. Nakayama M, Miyazaki M, Honda K, Kasai K, Tomo T, Nakamoto H, et al. Encapsulating peritoneal sclerosis in the era of a multi-disciplinary approach based on biocompatible solutions: the NEXT-PD study. Perit Dial Int. 2014;34(7):766–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Latus J, Ulmer C, Fritz P, Rettenmaier B, Biegger D, Lang T, et al. Phenotypes of encapsulating peritoneal sclerosis–macroscopic appearance, histologic findings, and outcome. Perit Dial Int. 2013;33(5):495–502.

    Article  PubMed  PubMed Central  Google Scholar 

  373. Sasaki K, Mizuno H, Iwamoto N, Imakita M, Yasuda K, Kimura T, et al. Laparoscopy reveals a diversity of peritoneal change in patients with long-term vintage of peritoneal dialysis. Blood Purif. 2016;41(1–3):48–54.

    Article  CAS  PubMed  Google Scholar 

  374. Kawanishi H, Banshodani M, Yamashita M, Shintaku S, Dohi K. Surgical treatment for encapsulating peritoneal sclerosis: 24 years’ experience. Perit Dial Int. 2019;39(2):169–74.

    Article  PubMed  Google Scholar 

  375. Kawanishi H, Moriishi M. Epidemiology of encapsulating peritoneal sclerosis in Japan. Perit Dial Int. 2005;25(Suppl 4):S14–8.

    Article  PubMed  Google Scholar 

  376. Io H, Maeda K, Sekiguchi Y, Shimaoka T, Aruga S, Nakata J, et al. Comparison between the fixation of peritoneal dialysis catheters to the peritoneal wall and the conventional placement technique: clinical experience and follow-up of a new implant technique for peritoneal dialysis catheters. Semin Dial. 2014;27(4):E42–7.

    Article  PubMed  Google Scholar 

  377. Xie H, Zhang W, Cheng J, He Q. Laparoscopic versus open catheter placement in peritoneal dialysis patients: a systematic review and meta-analysis. BMC Nephrol. 2012;13:69.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

To Lázaro Gotloib in memoriam for having built the basis of this chapter, giving us the opportunity to follow and extend his remarkable message, by completing the knowledge published after his disappearance.

To Dr. José Jimenez-Heffernan, outstanding pathologist at Hospital de La Princesa, in Madrid, who has helped us to understand the pathology of the peritoneum at different stages of disease. Part of the figures in this chapter comes from his laboratory.

To Dr. Guadalupe Gonzalez, peritoneal researcher at IdiPAZ and CBM, who has helped us to manage this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Selgas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Selgas, R., Honda, K., López-Cabrera, M., Hamada, C., Gotloib, L. (2023). Peritoneal Structure and Changes as a Dialysis Membrane After Peritoneal Dialysis. In: Khanna, R., Krediet, R.T. (eds) Nolph and Gokal's Textbook of Peritoneal Dialysis. Springer, Cham. https://doi.org/10.1007/978-3-030-62087-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62087-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62086-8

  • Online ISBN: 978-3-030-62087-5

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics