Skip to main content

Design in Exoskeleton Software for Lifting 50 Kg

  • Conference paper
  • First Online:
Innovation and Research (CI3 2020)

Abstract

The design of the exoskeleton HEXO is based on movements required by a per-son to walk and to lift heavy weight objects. This design contemplates just one required Degrees of Freedom (DOF) in each joint to complete these tasks. The design includes servo linear actuators to generate the translation of user and lift-ing required forces, because their nominal rate force is convenient in each action and were located to work without interfere with the normal performance of other limbs. Rotational servo actuators offered in the market were analyzed and includ-ed in a very first design, but they demonstrated to be non-convenient because their low generated torque and their overwhelming size that would increase the HEXO´s weight and interfere the desirable performance. Within de mechanical system design is included the charge analysis in main parts, those that would support all the structure and heavy object weight. This analysis is made into the most critical performed position. It also shows mass center for a stability analysis in the HEXO´s walking most critical positions. Control design of the HEXO is shown in a flow chart to follow by linear servo actuator activation in each limb, into walking and lifting tasks, it includes the conditional and final position to reach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoki, E., Manabe, S., Konosu, H., Imaida, M., Nakashima, I., Elbihara, Y.: Leg assist device. United States patent, pp. 1–9 (2015)

    Google Scholar 

  2. Bolton, W.: Mecatrónica, Sistemas de Control Electrónico en la Ingeniería Mecánica y Eléctrica, 4ta edn. Alfaomega, México (2010)

    Google Scholar 

  3. Catálogo de rodamientos FAG WL 41 520/3 SB. FAG. Recuperado el 07 de abril de 2016 de (2000). http://ingemecanica.com/tutorialsemanal/objetos/figutut214/FAG.pdf

  4. Chen, J., Liao, W.: A leg exoskeleton utilizing a magnetorheological actuator. In: Smart Materials and Structure Laboratory, PP. 824–828 (2006)

    Google Scholar 

  5. Chen, Y., Li, G., Zhu, Y., Zhao, J., Cai, H.: Design of a 6 DOF upper limb rehabilitation exoskeleton with parallel actuated joints. Bio-Med. Mater. Eng. 24(6), 2527–2535 (2014)

    Article  Google Scholar 

  6. Duncan, L.: Ergonomics and the Management of Musculoskeletal Disorders, 2dn edn. Elsevier, United States (1997)

    Google Scholar 

  7. Floyd, R.T.: Basic biomechanical factors & concepts. Strucutral kinesiology. Recuperado el 10 de marzo de 2016 de. http://www.kean.edu/~jeadams/docs/Kinesiology/Kines_Power_Points/Kines_PPT_PDF_Chap3.pdf. (s.f.)

  8. Glowinski, S., Krzyzynski, T., Pecolt, S., Maciejewski, I.: Design of motion trajectory of an arm exoskeleton. Arch. Appl. Mech. 2015, 76–85 (2014)

    Google Scholar 

  9. Guo, Q., Li, S., Jiang, D.: A lower extremity exoskeleton: human-machine coupled modeling, robust control design, simulation, and overload-carrying experiment. Math. Probl. Eng. 2015, 2–9 (2015)

    Google Scholar 

  10. Hibbeler, R.C.: Mecánica de Materiales, 8va edn. Pearson Prentice Hall, México (2011)

    Google Scholar 

  11. Kazerooni, H.: Berkeley Lower Extremity Exoskeleton BLEEX. Recuperado el 15 de abril de 2015, de. http://bleex.me.berkeley.edu/wp-content/uploads/helmedia/images/CV/BLEEX-Summary.pdf. (s.f.)

  12. Li, Y., Guan, X., Tong, Y., Xu, C.: Design and simulation study of the translational-knee lower extremity exoskeleton. Mechanika 21, 207–212 (2015)

    Article  Google Scholar 

  13. Linear shaft motor. Nippon pulse. Recuperado el 20 de enero de 2016, de (2016). http://nipponpulse.com/products/overview/linear-shaftservomotors

  14. Louie, D.R., Eng, J.J., Lam, T.: Gait speed using powered robotic exoskeleton after spinal cord injury: a systematic review oand correlational study. J. Neuroengineering Rehabil. 2015, 3–6 (2015)

    Google Scholar 

  15. Megatorque motor. NSK. Recuperado el 17 de enero de 2016 de (2009). http://onexia.com/nsk/pdf/NSK%211_PS_and_PN_Motor_Catalog.pdf

  16. Megatorque motor system user´s manual. NSK. Recuperado el 19 de enero de 2016, de (2003). https://www.jp.nsk.com/services/download/manualpdf/C237–01.pdf

  17. Melsec Q series motion controller programming manual. Mitsubishi. Recuperado el 20 de enero de 2016 de. http://dl.mitsubishielectric.com/dl/fa/document/manual/plc/sh080809eng/sh080809engs.pdf. (s.f.)

  18. Melsec Q series motion controller users manual. Mitsubishi. Recuperado el 21 de enero de 2016 de. http://dl.mitsubishielectric.com/dl/fa/document/manual/plc/sh080007/sh080007o.pdf. (s.f.)

  19. Melsec Q series users manual. Mitsubishi. Recuperado el 11 de enero de 2016 de (2004). https://www.plcsystems.ru/catalog/Mitsubishi/doc/SystemQ_MultipleCPU.pdf

  20. Melsec system Q beginners manual. Mitsubishi. Recuperado el 12 de enero de 2016 de (2007). https://www.mitsubishi/mitsubishi-q-seriesbeginners-manual.pdf

  21. System Q user’s manual. Mitsubishi. Recuperado el 12 de enero de 2016 de (2007). https://www.plcsystems.ru/catalog/Mitsubishi/doc/SystemQ_DigitalIO_Manual.pdf

  22. Micro actuator MA-35. Pi. Recuperado el 25 de enero de 2016, de (2014). http://www.pi-usa.us/products/Linearactuator-linearpusher/precision_actuator_overview.php

  23. Mott, R.L.: Diseño de Elementos de Máquinas, 4ta edn. Pearson Prentice Hall, México (2006)

    Google Scholar 

  24. MXB rodless belt drive actuators. Tolomatic. Recuperado el 18 de enero de 2016, de (2015). http://www.tolomatic.com/products/productdetails/mxb-u-unguided-belt-driven-actuators#/

  25. Navas, F.: Diseño mecatrónico aplicado a la robótica. UNAB, pp. 1–4 (2011)

    Google Scholar 

  26. Norton, R.: Diseño de Maquinaria, Síntesis y Análisis de Máquinas y Mecanismos, 3ra edn. Mc Graw Hill, México (2008)

    Google Scholar 

  27. Pons, J.: Wereable Robots, Biomechatronic Exoskeletons. Wiley, United States (2008)

    Book  Google Scholar 

  28. Push button Switches. Multicomp. Recuperado el 06 de enero, de 2016, de (2014). http://uk.farnell.com/multicomp/mcpas6b2m1ce7/switch-pushbutton-spst-ip67-blue/dp/1638332

  29. Resolute absolute optical encoder with Mitsubishi serial communications. Renishaw. Recuperado el 10 de abril de 2016, de (2016). http://resources.renishaw.com/en/details/–65959

  30. Riesgos asociados a la manipulación manual de cargas en el lugar de trabajo. Facts. Recuperado el 15 de marzo de 2016, de (2007). https://osha.europa.eu/sites/default/files/publications/documents/es/publications/factsheets/73/Factsheet_73_Riesgos_asociados_a_la_manipulacion_manual_de_cargas_en_el_lugar_de_trabajo.pdf+&cd=1&hl=en&ct=clnk&gl=ec

  31. Roncon, E., Moreno, J.C., Gallego, J.A., Pons, J.L.: Wereable Robots in Rehabilitation Engineering Tremor Suppression. Intech, Spain (2009)

    Google Scholar 

  32. Servo amplifier & motors Melservo-J4. Mitsubishi. Recuperado el 06 de marzo de 2016, de (2016). https://us.mitsubishielectric.com/fa/en/products/drive-products/ac_servos-melservo/melservo-j4

  33. Servo geared motors KSG. Georgii Kobold. Recuperado el 15 de enero de 2016, de (2014). www.georgii-kobold.de

  34. Servo system controller. Mitsubishi. Recuperado el 02 de marzo de 2016, de (2012). http://dl.mitsubishielectric.com/dl/fa/document/catalog/ssc/l03062/l03062f.pdf

  35. System Q. Mitsubishi. Recuperado el 01 de marzo de 2016, de (2004). https://www.hiflexonline.nl/products/mitsubishi/plc/documentatie/Q_Automation_Book.pdf

  36. Torque motors KTY-Q. Georgii Kobold. Recuperado el 15 de enero de 2016, de (2014). www.georgii-kobold.de

  37. Walsh, C.J., Paluska, D., Pasch, K., Grand, W., Valiente, A., Herr, H.: Development of a lightweight, underactuated exoskeleton for load-carrying augmentation. MIT media lab, pp. 3485–3490 (2006)

    Google Scholar 

  38. Wolf, J., Parker, C., Borisoff, J., Mortenson, W.B., Mattie, J.: A survey at stakholder perspectives on exoskeleton technology. J. Neuroeng. Rehabil. pp. 2–12 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Arias Realpe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arias Realpe, H., Barzallo Núñez, D.I., Basantes Montero, D.T., Andagoya Alba, D., Merino, L. (2021). Design in Exoskeleton Software for Lifting 50 Kg. In: Botto-Tobar, M., Zambrano Vizuete, M., Díaz Cadena, A. (eds) Innovation and Research. CI3 2020. Advances in Intelligent Systems and Computing, vol 1277. Springer, Cham. https://doi.org/10.1007/978-3-030-60467-7_45

Download citation

Publish with us

Policies and ethics