Skip to main content

Instrumental Neutron Activation Analysis and Its Application to Cultural Heritage Materials

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis

Abstract

Instrumental neutron activation analysis (INAA) is a sensitive analytical method for measuring the amounts of various elements present in many types of samples. The method is based on the nuclear properties of the elements. Applications for INAA cover a broad range of disciplines such as agriculture, archaeology, geoscience, human nutrition, environmental monitoring, and semiconductor technology. Archaeologists and chemists interested in archaeological studies were among the first to recognize the potential of INAA, and they initiated investigations of artifact provenance and the economics of trade and exchange. The use of INAA for archaeological studies continues to be quite active. The history of INAA, its theoretical basis, and recent applications in archaeology and cultural heritage are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caley ER (1962) Early investigations. In: Caley ER (ed) Analyses of ancient glasses 1790–1957: a comprehensive and critical survey, monographs of the Corning Museum of glass. Corning, NY, pp 13–23

    Google Scholar 

  2. Klaproth MH (1801) Sur quelques vitrifications antiques. In: Mémories de l’Académie Royal des Sciences et Belles-Lettres, Classe de Philosophie expérimentale, Decker, Berlin, pp 5–16

    Google Scholar 

  3. Davy H (1815) Some experiments and observations on the colors used in painting by the ancients. Philos Trans 105:97–124

    Article  Google Scholar 

  4. Fresenius KR (1845) Chemische analyse enier Celtischen waffe. Justus Liebigs Anal Chem 53:136–138

    Article  Google Scholar 

  5. Richards TW (1895) The composition of Athenian pottery. Am Chem J 17:152–154

    Google Scholar 

  6. Hevesy G, Levi H (1946) The actions of neutrons on the rare each elements. Danske Vidensk Selskab Mat-Fys Medd 14:3–34

    Google Scholar 

  7. Finston HL, Miskel J (1955) Radiochemical separation techniques. Ann Rev Nucl Sci 5:269–296

    Article  Google Scholar 

  8. Greenberg RR, Bode P, de Nadai Fernandes EA (2011) Neutron activation analysis: A primary method of measurement. Spectrochim Acta Part B 66:193–241

    Article  Google Scholar 

  9. De Soete D, Gijbels R, Hoste J (eds) (1972) Neutron activation analysis. Wiley, New York

    Google Scholar 

  10. Ehmann WD, Vance DE (1991) Radiochemistry and nuclear methods of analysis. John Wiley and Sons, New York

    Google Scholar 

  11. Glascock MD (1998) Activation analysis. In: Alfassi ZB (ed) Instrumental multi-element chemical analysis. Kluwer Academic, Dordrecht, pp 93–150

    Chapter  Google Scholar 

  12. Sayre EV, Dodson RW (1957) Neutron activation study of Mediterranean potsherds. Am J Archaeol 61:35–41

    Article  Google Scholar 

  13. Glascock MD, Speakman RJ, Neff H (2007) Archaeometry at the University of Missouri research reactor and the provenance of obsidian artefacts in North America. Archaeometry 49:343–357

    Article  Google Scholar 

  14. Dunnell RC (1993) Why archaeologists don’t care about archaeometry. Archaeomaterials 7:161–165

    Google Scholar 

  15. Boulanger MT (2013) Salvage archaeometry: lessons learned from the Lawrence Berkeley laboratory archaeometry archives. SAA Archaeol Rec 13:14–19

    Google Scholar 

  16. Rice PM (1987) Pottery analysis: a source book. University of Chicago Press, Chicago/London

    Google Scholar 

  17. Orton C, Hughes M (1993) Pottery in Archaeology. Cambridge University Press, Cambridge/New York

    Google Scholar 

  18. Landsberger S, Yellin J (2018) Minimizing sample sizes while achieving accurate elemental concentrations in neutron activation analysis of precious pottery. J Archaeol Sci: Rep 20:622–625

    Google Scholar 

  19. Blomster JP, Neff H, Glascock MD (2005) Olmec pottery production and export in ancient Mexico determined through elemental analysis. Science 307:1068–1072

    Article  Google Scholar 

  20. Masucci MA, Neff H, Glascock MD, Speakman RJ (2017) The organization of ceramic production and the origins of complexity in the Late Prehispanic coastal societies of Ecuador. In: Ownby MF, Druc IC, Masucci MA (eds) Integrative approaches in ceramic petrography. University of Utah Press, Salt Lake City, pp 39–52

    Google Scholar 

  21. Mutin B, Minc L (2019) The formative phase of the Helmand civilization, Iran and Afghanistan: new data from compositional analysis of ceramics from Shahr-i-Sokhta, Iran. J Archaeol Sci: Rep 23:881–899

    Google Scholar 

  22. Bishop RL (1994) Pre-Columbian pottery: research in the Mayan region. In: Scott DA, Myers P (eds) Archaeometry of Pre-Columbian Sites and Artifacts. The Getty Conservation Institute, Los Angeles, pp 15–66

    Google Scholar 

  23. Bell EE, Reents-Budet D, Bishop RL, Traxler LP (2003) Early classic ceramic offerings at Copan: A comparison of the Hunal, Margarita, and Sub-Jaguar Tombs. In: Bell EE, Canuto MA, Sharer RJ (eds) Understanding early classic Copan. University of Pennsylvania Museum, Philadelphia, pp 131–158

    Google Scholar 

  24. Glascock MD, Braswell GE, Cobean RH (1998) A systematic approach to obsidian source characterization. In: Shackley MS (ed) Archaeological Obsidian studies: method and theory. Plenum Press, New York/London, pp 15–65

    Chapter  Google Scholar 

  25. Glascock MD, Neff H (2003) Neutron activation analysis and provenance research in archaeology. Meas Sci Technol 14:1516–1526

    Article  Google Scholar 

  26. Glascock MD, Neff H, Stryker KS, Johnson TN (1994) Sourcing archaeological obsidian by an abbreviated NAA procedure. J Radioanal Nucl Chem 180:29–35

    Article  Google Scholar 

  27. Braswell GE, Glascock MD (1998) Interpreting intrasource variation in the composition of obsidian: the geoarchaeology of San Martin Jilotepeque, Guatemala. Lat Am Antiq 9:353–369

    Article  Google Scholar 

  28. Glascock MD, Kunselman R, Wolfman D (1999) Intrasource chemical differentiation of obsidian in the Jemez Mountains and Taos Plateau, New Mexico. J Archaeol Sci 26:861–868

    Article  Google Scholar 

  29. Ambroz JA, Glascock MD, Skinner CE (2001) Chemical differentiation of obsidian within the Glass Buttes Complex, Oregon. J Archaeol Sci 28:741–746

    Article  Google Scholar 

  30. Glascock MD, Ferguson JR (2012) Report on the analysis of obsidian source samples by multiple analytical methods. Available on request from the Archaeometry Laboratory at MURR

    Google Scholar 

  31. Holmes LL, Harbottle G, Blanc A (1994) Compositional characterization of French limestone: a new tool for art historians. Archaeometry 36:25–39

    Article  Google Scholar 

  32. Harbottle G, Holmes LL (2007) The history of the Brookhaven National Laboratory project in archaeological chemistry, and applying nuclear methods to the fine arts. Archaeometry 49:185–199

    Article  Google Scholar 

  33. Coleman ME (2010) Radioanalytical multi-elemental analysis: new methodology and archaeometric applications. PhD dissertation, Department of Chemistry, University of Missouri, Columbia

    Google Scholar 

  34. Zhu J, Glascock MD, Wang C-S, Zhao X, Lu W (2012) A study of limestone from the Longmen Grottoes of Henan province, China by neutron activation analysis. J Archaeol Sci 39:2568–2573

    Article  Google Scholar 

  35. Luedtke BE (1992) Archaeologist’s guide to Chert and Flint. Institute of Archaeology, University of California, Los Angeles

    Google Scholar 

  36. Hoard RJ, Bozell JR, Holen SR, Glascock MD, Neff H, Elam JM (1993) Source determination of White River group silicates from two archaeological sites in the Great Plains. Am Antiq 58:698–710

    Article  Google Scholar 

  37. Malyk-Selivanova N, Ashley GM, Gal R, Glascock MD, Neff H (1998) Geological-geochemical approach to sourcing prehistoric chert artifacts, northwestern Alaska. Geoarchaeology 13:673–708

    Article  Google Scholar 

  38. Eiselt BS, Popelka-Filcoff RS, Darling JA, Glascock MD (2011) Hematite sources and archaeological ochres from Hohokam and O’odham sites in central Arizona: an experiment in type identification and characterization. J Archaeol Sci 38:3019–3028

    Article  Google Scholar 

  39. Eiselt BS, Dudgeon J, Darling JA, Paucar EN, Glascock MD, Woodson MK (2019) In-situ sourcing of hematite paints on the surface of Hohokam Red-on-Buff ceramics using laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) and instrumental neutron activation analysis. Archaeometry 61:1–18

    Article  Google Scholar 

  40. MacDonald BL, Hancock RGV, Cannon A, Pidruczny A (2011) Geochemical characterization of ochre from central coastal British Columbia, Canada. J Archaeol Sci 38:3620–3630

    Article  Google Scholar 

  41. MacDonald BL, Hancock RGV, Cannon A, McNeill F, Reimer R, Pidruczny A (2013) Elemental analysis of ochre outcrops in southern British Columbia, Canada. Archaeometry 55:1020–1033

    Article  Google Scholar 

  42. MacDonald BL, Fox W, Dubreuil L, Beddard J, Pidruczny A (2018) Iron oxide geochemistry in the Great Lakes Region (North America): implications for ochre provenance studies. J Archaeol Sci: Rep 19:476–490

    Google Scholar 

  43. Popelka-Filcoff RS, Robertson JD, Glascock MD, Descantes C (2007) Trace element characterization of ochre from geological sources. J Radioanal Nucl Chem 272:17–27

    Article  Google Scholar 

  44. Popelka-Filcoff RS, Miksa EJ, Robertson JD, Glascock MD, Wallace H (2008) Elemental analysis and characterization of ochre sources from Southern Arizona. J Archaeol Sci 35:752–762

    Article  Google Scholar 

  45. Gordus AA, Gordus JP (1974) Neutron activation analysis of gold impurity levels in silver coins and art objects. In: Beck CW (ed) Archaeological chemistry I. American Chemical Society, Washington, DC, pp 124–147

    Chapter  Google Scholar 

  46. Oddy WA (1972) The analysis of gold coins – a comparison of results obtained by non-destructive methods. Archaeometry 14:109–117

    Article  Google Scholar 

  47. Meyers P, van Zelst L, Sayre EV (1973) Determination of major components and trace elements in ancient silver by thermal neutron activation analysis. J Radioanal Chem 16:67–78

    Article  Google Scholar 

  48. Stefanik M, Sklenka L, Huml O, Rataj J (2019) Activation analysis of Tibetan coins and thermal neutron flux measurement at the VR-1 training reactor. Radiat Phys Chem 155:304–309

    Article  Google Scholar 

  49. Rapp GR Jr, Henrickson E, Allert JD (1990) Native copper sources of artifact copper in pre-Columbian North America. In: Lasca NP, Donahue J (eds) Archaeological geology of North America. Geological Society of America, Boulder, pp 479–498

    Google Scholar 

  50. Hancock RGV, Pavlish LA, Farquhar RM, Salloljm R, Fox WA, Wilson GC (1991) Distinguishing European trade copper and north-eastern north American native copper. Archaeometry 33:69–86

    Article  Google Scholar 

  51. Hancock RGV, Fox WA, Conway T, Pavlish LA (1993) Chemical analysis of archaeological copper and brass from Northeastern Ontario. J Radioanal Nucl Chem 168:307–315

    Article  Google Scholar 

  52. Anselmi LM, Latta MA, Hancock RGV (1997) Instrumental neutron activation analysis of copper and brass from the Auger site (BdGw-3), Simcoe County, Ontario. Northeast Anthropol 53:47–59

    Google Scholar 

  53. Hancock RGV, Chafe A, Kenyon I (1994) Neutron activation analysis of sixteenth-and seventeenth-century European blue glass trade beads from the eastern Great Lakes area of North America. Archaeometry 36:253–266

    Article  Google Scholar 

  54. Kenyon I, Hancock RGV, Aufreiter S (1995) Neutron activation analysis of AD 1660–1930 European copper-coloured blue glass trade beads from Ontario, Canada. Archaeometry 37:323–337

    Article  Google Scholar 

  55. Hancock RGV, Aufreiter S, Kenyon I, Latta M (1999) White glass beads from the Auger Site, southern Ontario, Canada. J Archaeol Sci 26:907–912

    Article  Google Scholar 

  56. Hancock RGV, McKechnie J, Aufreiter S, Karklins K, Kapches M, Sempowski M, Moreau JF, Kenyon I (2000) Non-destructive analysis of European cobalt blue glass trade beads. J Radioanal Nucl Chem 244:567–573

    Article  Google Scholar 

  57. Sempowski ML, Nohe AW, Hancock RGV, Moreau JF, Kwok F, Aufreiter S, Karklins K, Baart J, Garrad C, Kenyon I (2001) Chemical analysis of 17th-century red glass trade beads from northeastern North America and Amsterdam. Archaeometry 43:503–515

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges his colleagues H. Neff and B.L. MacDonald for many stimulating discussions and recommendations. This chapter was written with support from the University of Missouri Research Reactor (MURR) and a grant from the National Science Foundation (#1921776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Glascock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Glascock, M.D. (2022). Instrumental Neutron Activation Analysis and Its Application to Cultural Heritage Materials. In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_5

Download citation

Publish with us

Policies and ethics