Skip to main content

Ground Penetrating Radar System: Principles

  • Reference work entry
  • First Online:
Handbook of Cultural Heritage Analysis

Abstract

Ground penetrating radar is a geophysical survey method widely applied to the assessment and monitoring of cultural heritage buildings. It is commonly used as a method of structural evaluation because it is nondestructive and noninvasive. This chapter describes the historical development of the method and explores the fundamentals and theory of ground penetrating radar systems and the properties of electromagnetic waves. Furthermore, it discusses some of the main applications and explains the procedure for data processing. Finally, it presents several case studies in the cultural heritage of Portugal and Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ender J (2002) 98 years of the RADAR principle: the inventor Christian Hülsmeyer. EUSAR

    Google Scholar 

  2. Kozlovsky EA (1989) Encyclopaedia of mining (in Russian), vol 4. Ed. Sovietic Encyclopaedia, pp 285–286

    Google Scholar 

  3. Finkelshtein MI, Kutev VA, Zolotared VP (1986) Applications of ground penetrating radar in geological engineering (in Russian). Ed. Nedra, Moscow

    Google Scholar 

  4. http://www.radarworld.org/huelsmeyer.html. Access 11 May 2020

  5. http://www.ieeeghn.org/wiki/index.php/Radar_during_World_War_II#Radar_during_World_War_II. Access 11 May 2020

  6. Buderi R (1998) The invention that changed the world: how a small group of radar pioneers won the Second World War and launched a technological revolution. Simon & Schuster, 576p. ISBN 0-684-83529-0

    Google Scholar 

  7. Kadioglu S, Daniels J (2010) Different time gain and amplitude-color arranging for ground penetrating radar data: applied samples. In: Proceedings of the 13th international conference on ground penetrating radar

    Google Scholar 

  8. Hulsenbeck et al (1926) German Patent No. 489434

    Google Scholar 

  9. Benson RC, Glaccum RA, Noel MR (1982) Geophysical techniques for sensing buried waste and waste migration. EPA – Environmental Monitoring Systems Laboratory, Las Vegas

    Google Scholar 

  10. Benson RC, Pasley DC (1984) Ground water monitoring: a practical approach for a major utility company. In: 4th natural symposium and exposition on aquifer restoration and ground water monitoring. National Water Well Association

    Google Scholar 

  11. Steenson B (1951) Radar methods for the exploration of glaciers. PhD thesis, California Institute of Technology, Pasadena

    Google Scholar 

  12. Evans S (1963) Radio techniques for the measurement of ice thickness. Polar Record 11:406–410

    Article  Google Scholar 

  13. Kadaba PK (1976) Penetration of 0.1 GHz to 1.5 GHz electromagnetic waves into the earth surface for remote sensing applications. In: Proc. IEEE S. E. Region 3 Conf, pp 48–50

    Google Scholar 

  14. Morey RM (1974) Continuous sub-surface profiling by impulse radar. In: Proceedings of conference on subsurface exploration for underground excavation and heavy construction. American Society of Civil Engineers, pp 213–232

    Google Scholar 

  15. E-Said M (1956) Geophysical prospection of underground water in the desert by means of electromagnetic interference fringes. Proc IRE 44:24–30

    Article  Google Scholar 

  16. Benedetto A, Pajewski L (2015) Civil engineering applications of ground penetrating radar. Springer

    Book  Google Scholar 

  17. Waite AH, Schmidt SJ (1961) Gross errors in height indication from pulsed radar altimeters operating over thick ice or snow. IRE Int Convent Rec 5(2):38–54

    Google Scholar 

  18. Walford MER (1964) Radio echo sounding through an ice shelf. Nature 204(4956):317–319

    Article  Google Scholar 

  19. Annan AP (2003) Ground penetrating radar principles, procedures and applications. Sensor and Software Inc, p 3

    Google Scholar 

  20. Cook JC (1974) Status of ground-probing radar and some recent experience. In: Proc. Conf. Subsurface exploration for underground excavation and heavy construction. American Society of Civil Engineers, pp 175–194

    Google Scholar 

  21. Cook JC (1975) Radar transparencies of mine and tunnel rocks. Geophysics 40:865–885

    Article  Google Scholar 

  22. Roe KC, Ellerbruch DA (1979) Development and testing of a microwave system to measure coal layer thickness up to 25 cm. National Bureau of Standards, Report No.SR-723-8-79. U.S. Dept. of Commerce, National Bureau of Standards, Boulder

    Book  Google Scholar 

  23. Cook J (1973) Radar exploration through rock in advance of mining. Trans Soc Mining Eng 254:140–146

    Google Scholar 

  24. Unterberger RR Radar and sonar probing of salt. In: 5th International symposium on salt, Hamburg. Northern Ohio Geological Society, pp 423–437

    Google Scholar 

  25. Holser WT, Brown RJ, Roberts FA, Fredriksson OA, Unterberger RR (1972) Radar logging of a salt dome. Geophysics 37:889–906

    Article  Google Scholar 

  26. Theirbach R (1974) Electromagnetic reflection in salt deposits. Geophysics 40:633–637

    Google Scholar 

  27. Ward SH, Phillips RJ, Adams GF, Brown WE Jr, Eggleton RE, Jackson P, Jordan R, Linlor WI, Peeples WJ, Porcello LJ, Ryu J, Schaber G, Sill WR, Thompson SH, Zelenka JS (1972) Apollo lunar sounder experiment, in Apollo 17. Preliminary science report. Scientific and Technical Office, NASA, Washington, DC, pp 22-1–22-26

    Google Scholar 

  28. Simmons G, Strangway D, Annan AP, Baker R, Bannister L, Brown R, Cooper W, Cubley D, de Bettencourt J, England AW, Groener J, Kong JA, LaTorraca G, Meyer J, Nanda V, Redman JD, Rossiter J, Tsang L, Urner J, Watts R (1973) Surface electrical properties experiment, in Apollo 17. Preliminary science report. Scientific and Technical Office, NASA, Washington, DC, pp 15-1–15-4

    Google Scholar 

  29. Morey RM (1974) Continuous subsurface profiling by impulse radar. In: Proceedings of engineering foundations conference on subsurface exploration for underground excavations and heavy construction, Henniker, pp 213–232

    Google Scholar 

  30. Annan AP, Davis JL (1976) Impulse radar soundings in permafrost. Radio Sci 11:383–394

    Article  Google Scholar 

  31. Watts RD, England AW (1976) Radio-echo sounding of temperate glaciers: ice properties and sounder design criteria. J Glaciol 21(85):39–48

    Google Scholar 

  32. Dolphin LT et al (1978) Radar probing of Victorio Peak, New Mexico. Geophysics 43(7):1441–1448

    Article  Google Scholar 

  33. Owen TR (1981) Cavity detection using VHF hole to hole electromagnetic techniques. In: Proceedings of the second tunnel detection symposium, Colorado School of Mines, Golden CO, U.S. Army MERADOM, Ft. Belvoir, VA, pp 126–141

    Google Scholar 

  34. Coon JB, Fowler JC, Schafers CJ (1981) Experimental uses of short pulse radar in coal seams. Geophysics 46(8):1163–1168

    Article  Google Scholar 

  35. Ulriksen CPF (1982) Application of impulse radar to civil engineering. PhD thesis, Dept of Engr, Geol., U. of Technology, Lund, p 175

    Google Scholar 

  36. Olsson O, Falk L, Forslund O, Sandberg E (1987) Crosshole investigations – results from borehole radar investigations. Stripa Project TR 87-11. SKB, Stockholm

    Google Scholar 

  37. Fisher E, McMechan GA, Annan AP (1992) Acquisition and processing of wide-aperture ground-penetrating radar data. Geophysics 57:495–504

    Article  Google Scholar 

  38. Friere SLM, Ulrych TJ (1988) Application of singular decomposition to vertical seismic profiling. Geophysics 53(6):778–785

    Article  Google Scholar 

  39. Maijala P (1992) Application of some seismic data processing methods to ground penetrating radar data. In: Fourth international conference on ground penetrating radar June 8–13, 1992, Rovaniemi, Finland. Geological Survey of Finland, Special paper 16, 365 pages

    Google Scholar 

  40. Gerlitz K, Knoll MD, Cross GM, Luzitano RD, Knight R (1993) Processing ground penetrating radar data to improve resolution of near-surface targets. In: Proceeding of the symposium on the application of geophysics to engineering and environmental problems, San Diego, California

    Google Scholar 

  41. Goodman D (1993) 1994: Ground-penetrating radar simulation in engineering and archaeology. Geophysics 59:224–232

    Article  Google Scholar 

  42. Brewster ML, Annan AP (1994) Ground-penetrating radar monitoring of a controlled DNAPL release: 200 MHz radar. Geophysics 59:1211–1221

    Article  Google Scholar 

  43. Zeng X, McMechan GA, Cai J, Chen HW (1995) Comparison of ray and Fourier methods for modelling monostatic ground-penetrating radar profiles. Geophysics 60:1727–1734

    Article  Google Scholar 

  44. Cai J, McMechan GA (1995) Ray-based synthesis of bistatic ground-penetrating radar profiles. Geophysics 60:87–96

    Article  Google Scholar 

  45. Roberts RL, Daniels JJ (1996) Analysis of GPR polarization phenomena. JEEG 1(2):139–157

    Article  Google Scholar 

  46. Redman JD, Kunert M, Gilson EW, Pilon JA, Annan AP (1996) Borehole radar for environmental applications: selected case studies. In: Proceedings of the sixth international conference on ground penetrating radar (GPR’96) Sendai, Japan

    Google Scholar 

  47. Jol H (1996) Digital Ground Penetrating Radar (GPR): a new geophysical tool for coastal barrier research (Examples from the Atlantic, Gulf and Pacific Coasts USA). J Coast Res 12:960

    Google Scholar 

  48. Holiger K, Bergmann T (1998) Accurate and efficient FDTD modelling of ground penetrating radar antenna radiation. Geophys Res Lett 25:3883–3886

    Article  Google Scholar 

  49. Bergmann T, Blanch JO, Robertsson JOA, Holliger K (1999) A simplified Lax-Wendroff correction for staggered-grid FDTD modeling of electromagnetic wave propagation in frequency-dependent media. Geophysics 64:1369–1377

    Article  Google Scholar 

  50. Sato M (2009) Principles of mine detection by ground-penetrating radar. In: Furuta K, Ishikawa J (eds) Anti-personnel landmine detection for humanitarian demining. Springer, pp 19–26

    Chapter  Google Scholar 

  51. Van der Kruk J, Slob EC, Fokkema JT (1998) Background of ground penetrating radar measurements. Geol Mijnb 77(2):177–188

    Article  Google Scholar 

  52. Sonia S, Perez V (2014) Ground penetrating radar applications in seismic zonation: assessment and evaluation. PhD thesis, UPC

    Google Scholar 

  53. Pérez-Gracia V, Di Capua D, González-Drigo R, Pujades L (2009) Laboratory characterization of a GPR antenna for high-resolution testing: radiation pattern and vertical resolution. NDT E Int 42(4):336–344. https://doi.org/10.1016/j.ndteint.2008.12.007

    Article  Google Scholar 

  54. Yilmaz O (2000) Seismic data analysis. Processing, inversion, and interpretation of seismic data, vol 1/2. Soc. Exploration Geophysics

    Google Scholar 

  55. Rasol M (2021) Development of new GPR methodologies for soil and cement concrete pavement assessment. PhD thesis. Polytechnic University of Catalonia. https://www.researchgate.net/publication/348743498_Development_of_New_GPR_Methodologies_for_Soil_and_Cement_Concrete_Pavement_Assessment

  56. Conyers L, Goodman D (1997) Ground-penetrating radar: an introduction for archaeologists. Altamira Press

    Google Scholar 

  57. Pearce J, Mittleman D (2002) Defining the Fresnel Zone for broadband radiation. Phys Rev E 66:4p

    Article  Google Scholar 

  58. Perez-Gracia V, Santos-Assunçao S, Caselles O, Clapes J, Sossa V (2019) Combining ground penetrating radar and seismic surveys in the assessment of cultural heritage buildings: the study of roofs, columns, and ground of the gothic church Santa Maria del Mar, in Barcelona (Spain). Struct Control Health Monit 26:e232. https://doi.org/10.1002/stc.2327

    Article  Google Scholar 

  59. Annan AP (2002) GPR – history, trends, and future developments. Subsurf Sens Technol Appl 3:253–270. https://doi.org/10.1023/A:1020657129590

    Article  Google Scholar 

  60. Ajith KK, Bhattacharya A (2014) Improved ultra-wide bandwidth bow-tie antenna with metamaterial lens for GPR applications. In: Proceedings of the 15th international conference on ground penetrating radar (GPR), pp 739–744

    Google Scholar 

  61. Saarenketo T, Scullion T (2000) Road evaluation with ground penetrating radar. J Appl Geophys 43:119–138

    Article  Google Scholar 

  62. Zhou B, Cui TJ (2011) Directivity enhancement to Vivaldi antennas using compactly anisotropic zero-index metamaterials. IEEE Antennas Wirel Propag Lett 10:326–329

    Article  Google Scholar 

  63. Gibson PJ (1979) The Vivaldi aerial. In: Proceedings of the 9th European microwave conference, p 736

    Google Scholar 

  64. Kazemi R (2018) Development of a logarithmic spiral antenna in UWB GPR for humanitarian demining. Electromagnetics 38(6):366–379. https://doi.org/10.1080/02726343.2018.1488428

    Article  Google Scholar 

  65. Trinks I, Johansson B, Gustafsson J, Emilsson J, Friborg J, Gustaffsson C, Nissen J, Hinterleitner A (2010) Efficient, large-scale archaeological prospection using true three-dimensional GPR array system. Archaeol Prospect 17:175–186

    Article  Google Scholar 

  66. James S (1992) Mellett: location of human remains with ground penetrating radar. Special paper 16, 4th international conference on ground penetrating radar, pp 359–365

    Google Scholar 

  67. Nuzzo L, Alli G, Guidi R, Cortesi N, Sarri A, Manacorda G (2014) A new densely-sampled ground penetrating radar array for landmine detection. In: Proceedings of the 15th international conference on ground penetrating radar (GPR), pp 969–974

    Google Scholar 

  68. Simi A, Manacorda G, Benedetto A (2012) Bridge deck survey with high resolution ground penetrating radar. In: Proceedings of the 14th international conference on ground penetrating radar

    Google Scholar 

  69. Saracin A (2017) Using georadar systems for mapping underground utility networks. Procedia Eng 29:216–223. https://doi.org/10.1016/j.proeng.2017.11.150

    Article  Google Scholar 

  70. Rasol M, Santos-assunçao S, Pais JC, Sossa V, Solla M (2019) Laboratory tests in rigid pavement. In: EAGE (ed) Near surface geoscience;10th international workshop on advanced ground penetrating radar. EAGE, The Hague

    Google Scholar 

  71. Rasol M, Perez-Gracia V, Solla M, Pais JC, Fernandes FM, Rubens Santos C, Roberts S (2020) Incorporation of GPR data into characterization of the bitumen filled cracks in pavements: lab and numerical study. EGU General Assembly. https://doi.org/10.5194/egusphere-egu2020-20920

    Book  Google Scholar 

  72. Rasol MA, Pérez-Gracia V, Solla M, Pais JC, Fernandes FM, Santos C (2020) An experimental and numerical approach to combine Ground Penetrating Radar and computational modelling for the identification of early cracking in cement concrete pavements. NDT E Int. https://doi.org/10.1016/j.ndteint.2020.102293

  73. Rasol MA, Pérez-Gracia V, Fernandes FM, Pais JC, Solla M, Santos C (2020) NDT assessment of rigid pavement damages with ground penetrating radar: laboratory and field tests. Int J Pavement Eng 0:1–16. https://doi.org/10.1080/10298436.2020.1778692

    Article  Google Scholar 

  74. James S (1990) Mellett: ground penetrating radar enhances knowledge of earth’s surface layer. Geotimes 35(9):12–14

    Google Scholar 

  75. Bevan BW (1991) The search for graves. Geophysics 56(9):1310–1319

    Article  Google Scholar 

  76. Young JZ (1975) The life of mammals. Oxford University Press, London, p 528

    Google Scholar 

  77. Barone G et al (2004) Geoarcheometric and geophysical methodologies applied to the study of cultural heritage: “St. Agata la Vetere” in Catania (Sicily, Italy). J Cult Herit 5:263–271

    Article  Google Scholar 

  78. Barraca N et al (2016) A case study of the use of GPR for rehabilitation of a classified Art Deco building: the InovaDomus house. J Appl Geophys 127:1–13

    Article  Google Scholar 

  79. Pérez-Gracia V, González-Drigo R, Di Capua D (2008) Horizontal resolution in a non-destructive shallow GPR survey: an experimental evaluation. NDT E Int 41(8):611–620. https://doi.org/10.1016/j.ndteint.2008.06.002

    Article  Google Scholar 

  80. Rasol M, Pérez-Gracia V, Santos-Assunçao S (2018) Analysis and calibration of Ground Penetrating Radar shielded antennas. In: 17th international conference on Ground Penetrating Radar (GPR). IEEE, pp 1–4

    Google Scholar 

  81. Doolittle JA, Collins ME (1995) Use of soil information to determine application of ground-penetrating radar. J Appl Geophys 33:101–108

    Article  Google Scholar 

  82. Doolittle JA, Minzenmayer FE, Waltman SW, Benham EC (2002) Ground penetrating radar soil suitability map of the conterminous United States. Ninth international conference on ground penetrating radar. Proc SPIE 4158:7–12

    Article  Google Scholar 

  83. Robinson M et al (2013) Ground penetrating radar. British Society for Geomorphology

    Google Scholar 

  84. Annan P (2009) Ground penetrating radar principles, procedures & applications, vol Ground Pen. p. iv

    Google Scholar 

  85. Jol H (2007) Ground penetrating radar theory and applications, vol 0300, no 07. Elsevier

    Google Scholar 

  86. Cassidy NJ, Jol HM (2009) Ground penetrating radar data processing, modelling and analysis. In: Ground penetrating radar: theory and applications. Elsevier, pp 141–176

    Chapter  Google Scholar 

  87. Strange AD, Chandran V, Ralston J (2002) Signal processing to improve target detection using Ground penetrating radar. In: Fourth Australasian Workshop on Signal Processing and Applications (WOSPA), pp 139–142

    Google Scholar 

  88. Abujarad F (2007) Doctoral thesis ground penetrating radar signal; Processing for landmine detection

    Google Scholar 

  89. Sheriff S (2008) Processing Ramac GPR data with reflex. In: Jol HM (ed) Ground penetrating radar: theory and applications. Elsevier

    Google Scholar 

  90. Robinson EA, Treitel S (2000) Geophysical signal analysis. Soc. Exploration Geophysics, Tulsa

    Book  Google Scholar 

  91. Goodman D (1994) Ground-penetrating radar simulation in engineering and archaeology. Geophysics 59(2):224–232

    Article  Google Scholar 

  92. Liu H, Xing B, Wang H, Cui J, Spencer BF (2019) Simulation of ground penetrating radar on dispersive media by a finite element time domain algorithm. J Appl Geophys 170:103821

    Article  Google Scholar 

  93. Pasternak M, Kędzierawski R, Pietrasński J (2011) Finite element method application for simulation of ground penetrating radar response. Comput Methods Exp Measur XV 51:445

    Google Scholar 

  94. Carcione JM (1996a) Ground-penetrating radar: wave theory and numerical simulation in lossy anisotropic media. Geophysics 61(6):1664–1677

    Article  Google Scholar 

  95. Carcione JM (1996b) Wave propagation in anisotropic, saturated porous media: plane-wave theory and numerical simulation. J Acoust Soc Am 99(5):2655–2666

    Article  Google Scholar 

  96. Giannopoulos A (2005) Modelling ground penetrating radar by GprMax. Constr Build Mater 19(10):755–762. https://doi.org/10.1016/j.conbuildmat.2005.06.007

    Article  Google Scholar 

  97. Leucci G, Negri S, Carrozzo M, Nuzzo L (2002) Use of ground penetrating radar to map subsurface moisture variations in an urban area. J Environ Eng Geophys 7(2):69–77

    Article  Google Scholar 

  98. Lack P (2002) Studies of ground penetrating radar antennas. In: Proceedings of the 2nd international workshop on advanced GPR

    Google Scholar 

  99. Solla M, Lorenzo H, Novo A, Caamaño JC (2012) Structural analysis of the Roman Bibei bridge (Spain) based on GPR data and numerical modelling. Autom Constr 22:334–339. https://doi.org/10.1016/j.autcon.2011.09.010

    Article  Google Scholar 

  100. Rasol MA, Pérez-Gracia V, Fernandes FM, Pais JC, Santos-Assunçao S, Santos C, Sossa V (2020) GPR laboratory tests and numerical models to characterize cracks in cement concrete specimens, exemplifying damage in rigid pavement. Measurement. https://doi.org/10.1016/j.measurement.2020.107662

  101. Sossa V, Pérez-Gracia V, González-Drigo RA, Rasol M (2019) Lab non destructive test to analyze the effect of corrosion on ground penetrating radar scans. Remote Sens 11:2814

    Article  Google Scholar 

  102. Gizzi FT, Leucci G (2018) Global research patterns on ground penetrating radar (GPR). Surv Geophys 39:1039–1068

    Article  Google Scholar 

  103. Roca IG (2015) Safety evaluation of the imperfect chapels from Batalha Monastery. Master dissertation on Structural Analysis of Monuments and Historical Constructions Analysis (SAHC), Erasmus Mundus

    Google Scholar 

Download references

Acknowledgments

This research has been partially funded by the Spanish Ministry of Economy and Competitiveness (MINECO) of the Spanish Government and by the European Regional Development Fund (FEDER) of the European Union (UE) through projects referenced as CGL2011-23621 and CGL2015-65913-P (MINECO/FEDER, UE). The research is also a contribution to the EU-funded COST Action CA17131 (SAGA), “The Soil Science & Archaeo-Geophysics Alliance: going beyond prospection,” and COST Action CA18120 (CertBond), “Reliable roadmap for certification of bonded primary structures.” We appreciate the support of Duhok Polytechnic University, University of Minho, and Universitat Politècnica de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mezgeen Rasol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rasol, M., Pérez-Gracia, V., Fernandes, F.M., Pais, J.C., Santos-Assunçao, S., Roberts, J.S. (2022). Ground Penetrating Radar System: Principles. In: D'Amico, S., Venuti, V. (eds) Handbook of Cultural Heritage Analysis. Springer, Cham. https://doi.org/10.1007/978-3-030-60016-7_25

Download citation

Publish with us

Policies and ethics