Skip to main content

Emerging Technologies in Diagnostic Virology and Antiviral Strategies

  • Living reference work entry
  • First Online:
Handbook of Smart Materials, Technologies, and Devices

Abstract

Timely and accurate diagnosis of viral infections has an important role in public healthcare management. Accordingly, there is a growing need to update on emerging diagnostics, which would be helpful in identifying newer uncharacterized viruses. With increasing viral pandemics in the past century, development of novel antiviral strategies also poses an important challenge to the current healthcare system. Herein, we describe several recent advancements on rapid viral detection and antiviral methods. Among the various diagnostic approaches, CRISPR-Cas system-based detection of viral nucleic acid on a paper-based lateral flow assay, fluid-phase immunoassay technology, and luciferase immunoprecipitation system followed by paramagnetic technology (LIPSTICKS) appear promising. Recently developed multiplex microsphere immunoassay (MIA), sandwich-type electrochemiluminescence, nanoparticle-based immunodetection, solid-phase immunoelectron microscopy (SPIEM), loop-mediated isothermal amplification (LAMP), biosensors, aptamers, and microarray technique also open a new era in viral diagnostics. Apart from these, transmission electron microscope study and MALDI (matrix-assisted laser desorption/ionization) methods are also some sophisticated technologies for detection of uncharacterized viruses. The review will further highlight on the emerging antiviral strategies. MHC class I and class II associated peptide proteomics (MAPPs) is a powerful tool for directly profiling neoantigen. The sequencing data of neoantigen can help in the synthesis of effective peptide vaccines that can stimulate humoral and cell-mediated immune responses. Type I IFN-based antiviral therapy, followed by the usage of stimulator of IFN gene (STINGs) as vaccine adjuvants to boost up vaccine efficacy against viral infection, also appears to be a novel method. Taken together, this review will highlight on our current understanding of these high-throughput viral detection techniques as well as novel antiviral approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Acosta PL, Byrne AB, Hijano DR et al (2020) Human type I interferon antiviral effects in respiratory and reemerging viral infections. J Immunol Res 2020:1372494

    Article  Google Scholar 

  • Alison J, Kalanthe H, Amanda J et al (2013) Multiplex microsphere immunoassays for the detection of IgM and IgG to Arboviral diseases. PLoS One 8(9):e75670

    Article  Google Scholar 

  • Babamiri B, Hallaj R, Salimi A (2018) Ultrasensitive electrochemiluminescence immunosensor for determination of hepatitis B virus surface antigen using CdTe@ CdS-PAMAM dendrimer as luminescent labels and Fe3O4 nanoparticles as magnetic beads. Sensors Actuators B Chem 254:551–560

    Article  Google Scholar 

  • Banerjee R, Jaiswal A (2018) Recent advances in nanoparticle-based lateral flow immunoassay as a point-of-care diagnostic tool for infectious agents and diseases. Analyst 143(9):1970–1996

    Article  Google Scholar 

  • Burbelo PD, Goldman R, Mattson TL (2005) A simplified immunoprecipitation method for quantitatively measuring antibody responses in clinical sera samples by using mammalian-produced Renilla luciferase-antigen fusion proteins. BMC Biotechnol 5:22

    Article  Google Scholar 

  • Burbelo PD, Ching KH, Klimavicz CM et al (2009) Antibody profiling by Luciferase Immunoprecipitation Systems (LIPS). J Vis Exp 32:1549

    Google Scholar 

  • Burbelo PD, Gunti S, Keller JM et al (2017) Ultrarapid measurement of diagnostic antibodies by magnetic capture of immune complexes. Sci Rep 7(1):3818

    Article  Google Scholar 

  • Buss SN, Leber A, Chapin K et al (2015) Multicenter evaluation of the Bio Fire Film Array gastrointestinal panel for etiologic diagnosis of infectious gastroenteritis. J Clin Microbiol 53:915–925

    Article  Google Scholar 

  • Connelly JT, Kondapalli S, Skoupi M et al (2012) Micro-total analysis system for virus detection: microfluidic preconcentration coupled to liposome-based detection. Anal Bioanal Chem 402:315–323

    Article  Google Scholar 

  • Draz MS, Shafiee H (2018) Applications of gold nanoparticles in virus detection. Theranostics 8(7):1985

    Article  Google Scholar 

  • Driskell JD, Zhu Y, Kirkwood CD et al (2010) Rapid and sensitive detection of rotavirus molecular signatures using surface enhanced Raman spectroscopy. PLoS One 5:e10222

    Article  Google Scholar 

  • Escudero-Abarca BI, Suh SH, Moore MD et al (2014) Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. PLoS One 9:e106805

    Article  Google Scholar 

  • Gencer D, Bayramoglu Z, Nalcacioglu R et al (2018) Characterisation of three Alphabaculovirus isolates from the gypsy moth, Lymantria dispar dispar (Lepidoptera: Erebidae), in Turkey. Biocontr Sci Technol 28:107–121

    Article  Google Scholar 

  • Gentile M, Gelderblom HR (2014) Electron microscopy in rapid viral diagnosis: an update. New Microbiol 37:403–422

    Google Scholar 

  • Huger AM (1967) Elektronenmikroskopie bei der Diagnose von Insektenkrankheiten. In: van der Laan FA (ed) Proc. Intern. Colloq. “Insect pathology and microbial control”. North Holland, Amsterdam, pp 29–53

    Google Scholar 

  • Huger AM (1974) Methoden und Bedeutung der diagnose von Insektenkrankheiten/methods and importance of diagnosis of insect diseases. J Plant Dis Protect 81:372–388

    Google Scholar 

  • Hwang SG, Ha K, Guk K et al (2018) Rapid and simple detection of Tamiflu-resistant influenza virus: development of oseltamivir derivative-based lateral flow biosensor for point-of-care (POC) diagnostics. Sci Rep 8:12999

    Article  Google Scholar 

  • Johnson AJ, Noga AJ, Kosoy O et al (2005) Duplex microsphere-based immunoassay for detection of anti-West Nile virus and anti-St. Louis encephalitis virus immunoglobulin m antibodies. Clin Diagn Lab Immunol 12:566–574

    Google Scholar 

  • Joshi VG, Dighe VD, Thakuria D et al (2013) Multiple antigenic peptide (MAP): a synthetic peptide dendrimer for diagnostic, antiviral and vaccine strategies for emerging and re-emerging viral diseases. Indian J Virol 24(3):312–320

    Article  Google Scholar 

  • Kieboom CH, Beek SL, Meszaros T et al (2015) Aptasensors for viral diagnostics. Trends Anal Chem 74:58–67

    Article  Google Scholar 

  • Kiselev D, Matsvay A, Abramov I et al (2020) Current trends in diagnostics of viral infections of unknown etiology. Viruses 12(2):211

    Article  Google Scholar 

  • Koenig R, Lesemann DE (2001) Plant virus identification. In: Encyclopedia of life sciences. Wiley, Chichester

    Google Scholar 

  • Leland DS, Ginocchio CC (2007) Role of cell culture for virus detection in the age of technology. Clin Microbiol Rev 20:49–78

    Article  Google Scholar 

  • Lewis DC, Lightfoot NF, Pether JV (1988) Solid-phase immune electron microscopy with human immunoglobulin M for serotyping of Norwalk-like viruses. J Clin Microbiol 26:938–942

    Article  Google Scholar 

  • Luo Y, Nartker S, Miller H et al (2010) Surface functionalization of electrospun nanofifibers for detecting E. coli O157: H7 and BVDV cells in a direct-charge transfer biosensor. Biosens Bioelectron 26:1612–1617

    Article  Google Scholar 

  • Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13(11):722

    Article  Google Scholar 

  • Malonis RJ, Lai JR, Vergnolle O (2020) Peptide-based vaccines: current progress and future challenges. Chem Rev 120(6):3210–3229

    Article  Google Scholar 

  • Martínez MA, Soto-Del Río Mde L, Gutiérrez RM et al (2015) DNA microarray for detection of gastrointestinal viruses. J Clin Microbiol 53:136–145

    Article  Google Scholar 

  • Morinet F, Ferchal F, Colimon R, Perol Y (1984) Comparison of six methods for detecting human rotavirus in stools. Eur J Clin Microbiol Infect Dis 3:136–140

    Google Scholar 

  • Mourya DT, Yadav PD, Ullas PT et al (2019) Emerging/re-emerging viral diseases & new viruses on the Indian horizon. Indian J Med Res 149(4):447–467

    Article  Google Scholar 

  • Oem JK, Ferris NP, Lee K-N et al (2009) Simple and rapid lateral-flow assay for the detection of foot-and-mouth disease virus. Clin Vaccine Immunol 16(11):1660–1664

    Article  Google Scholar 

  • Oka T, Wang Q, Katayama K, Saif LJ (2015) Comprehensive review of human sapoviruses. Clin Microbiol Rev 28:32–53

    Article  Google Scholar 

  • Park JW, Jin Lee S, Choi EJ, Kim J et al (2014) An ultra-sensitive detection of a whole virus using dual aptamers developed by immobilization-free screening. Biosens Bioelectron 51:324–329

    Article  Google Scholar 

  • Pineda MF, Chan LLY, Kuhlenschmidt T et al (2009) Rapid specfic and label-free detection of porcine rotavirus using photonic crystal biosensors. IEEE Sensors J 9:470–477

    Article  Google Scholar 

  • Quesada GD, Merkoçi A (2015) Nanoparticle-based lateral flow biosensors. Biosens Bioelectron 73:47–63

    Article  Google Scholar 

  • Quiñones B, Lee BG, Martinsky TJ et al (2017) Sensitive genotyping of foodborne-associated human noroviruses and hepatitis A virus using an array-based platform. Sensors 17:2157

    Article  Google Scholar 

  • Reboud J, Xu G, Garrett A et al (2019) Paper-based microfluidics for DNA diagnostics of malaria in low resource underserved rural communities. Proc Natl Acad Sci 116(11):4834–4484

    Article  Google Scholar 

  • Rosendahl HS, Van BJ, de Jonge J et al (2014) T cell responses to viral infections – opportunities for Peptide vaccination. Front Immunol 5:171

    Google Scholar 

  • Sajid M, Kawde AN, Daud M (2015) Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem 19:689–705

    Article  Google Scholar 

  • Sher M, Zhuang R, Demirci U et al (2017) Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms. Expert Rev Mol Diagn 17(4):351–366

    Article  Google Scholar 

  • Song KK, Lee S, Ban C (2012) Aptamers and their biological applications. Sensors 12:612–631

    Article  Google Scholar 

  • Wang D, Coscoy L, Zylberberg M et al (2002) Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci U S A 99:15687–15692

    Article  Google Scholar 

  • Wang H, Cong F, Zeng F et al (2018) Development of a real time reverse transcription loop-mediated isothermal amplification method (RT-LAMP) for detection of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV). J Virol Methods 260:45–48

    Article  Google Scholar 

  • Yu X, Shi L, Lv X et al (2015) Development of a real-time reverse transcription loop-mediated isothermal amplification method for the rapid detection of porcine epidemic diarrhea virus. Virol J 12:76

    Article  Google Scholar 

  • Zhang J, Zhao Z, Xu M et al (2015) The establishment of biosensor technology based on F0F1-ATPase molecular motor for detection of rotavirus and hepatitis A virus. Biosens J 4:121

    Article  Google Scholar 

  • Zubair A, Burbelo PD, Vincent LG et al (2011) Microfluidic LIPS for serum antibody detection: demonstration of a rapid test for HSV-2 infection. Biomed Microdevices 13(6):1053–1062

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Patra, G., Mukhopadhyay, S. (2021). Emerging Technologies in Diagnostic Virology and Antiviral Strategies. In: Hussain, C.M., Di Sia, P. (eds) Handbook of Smart Materials, Technologies, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-58675-1_97-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58675-1_97-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58675-1

  • Online ISBN: 978-3-030-58675-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics