Skip to main content

Bioactive Compounds of Prickly Pear [Opuntia ficus-indica (L.) Mill.]

  • Reference work entry
  • First Online:
Bioactive Compounds in Underutilized Vegetables and Legumes

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Opuntia ficus-indica (L.) Mill, commonly called prickly pear or nopal cactus, belongs to the Cactaceae family. Opuntia ficus-indica (L.) Mill is a dicotyledonous angiosperm plant, known, since the dawn of time, for its ability to thrive under environments recognized as stressful for most plant species. Opuntia ficus-indica has been used for a long time as diet, fodder, and beverage for both humans and animals, as well as to prevent soil erosion and to combat desertification. Opuntia ficus-indica has traditionally marked the folk medicine, owing to its therapeutic properties to a plethora of bioactive molecules, involving organic acids, phenolic acids, flavonoids, betalains, carotenoids, vitamins, biothiols, taurine, saponins, fatty acids, and phytosterols. The content of these bioactive molecules varies within cladodes, fruits or prickly pears, peels, seeds, and flowers. Whereas pears were commonly considered as noble fruits, peels have been arisen in the last decades as a promising by-product for both animals and humans health and nutrition. Nowadays, there is compelling evidence that Opuntia cacti are functional foods, source of nutrients, and bioactive molecules endowed with high antioxidant potential, and a large specter of biological, medicinal, and pharmacological applications. Indeed, Opuntia ficus-indica is highlighted as an excellent source of natural pigments, having promising applications in food industry and cosmetic. The present chapter aims to stressing the major classes of bioactive phytochemicals from Opuntia ficus-indica, with a deep understanding of the basis of their antioxidant activities, as well as an overview of their biological and medicinal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 29 October 2021

    In table 1, missing text has been included in the columns “Cladodes”, “Fruits”, “Peels” and “Seeds”. The spelling of the term “Flavanols” is updated to “Flavonols” in two instances.

References

  1. Piga A (2004) Cactus pear: a fruit of nutraceutical and functional importance. J Prof Assoc Cactus Dev 6:9–22

    Google Scholar 

  2. Bekir EA (2006) Cactus pear (Opuntia ficus-indica) in Turkey: growing regions and pomological traits of cactus pear fruits. Acta Hortic 728:51–54

    Article  Google Scholar 

  3. Flannery RV (1985) Los orígenes de la agricultura en México: las teorías y las evidencias. In: Rojas T, Sanders W (eds) Historia de la agricutura epoca prehispánica siglo XVI. INAH, México City

    Google Scholar 

  4. Flores VCA, Aguirre RJR (1979) El nopal como forraje. UACH-CIESTAAM, Chapingo

    Google Scholar 

  5. Velázquez E (1998) El nopal y su historia. Clio Libros y Videos, México City

    Google Scholar 

  6. Griffith MP (2004) The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. Am J Bot 91:1915–1921

    Article  PubMed  Google Scholar 

  7. de Sahagún FB (1997) Historia general de las cosas de la Nueva España. Porrúa, México City

    Google Scholar 

  8. Ramírez-Guzmán KN, Torres-León C, Martinez-Medina GA, de la Rosa O, Hernández-Almanza A, Alvarez-Perez OB, Araujo R, Rodríguez González L, Londoño L, Ventura J, Rodríguez R, Martinez JL, Aguilar CN (2019) Traditional fermented beverages in Mexico. In: Grumezescu AM, Holban AM (eds) Fermented beverages: the science of beverages, vol 5. Elsevier, London

    Google Scholar 

  9. Mapes C, Basurto F (2016) Biodiversity and edible plants. In: Lira R, Casas A, Blancas J (eds) Ethnobotany of Mexico: interactions of people and plants in Mesoamerica. Springer, New York

    Google Scholar 

  10. Herrera T (2007) Los Hongos en la cultura mexicana: hebidas y alimentos tradicionales fermentados, hongos alucinogenso. Etnobiología 5:108–116

    Google Scholar 

  11. Nazareno MA (2015) An overview of the medicinal uses of cactus products. In: De Waal HO, Louhaichi M, Taguchi M, Fouché HJ, De Wit M (eds) Development of a cactus pear agro-industry for the sub-Sahara Africa region. Proceedings of international workshop, University of the Free State, Bloemfontein, 27–28 Jan 2015

    Google Scholar 

  12. Biesalski HK, Dragsted LO, Elmadfa I, Grossklaus R, Müller M, Schrenk D, … Weber P (2009) Bioactive compounds: definition and assessment of activity. Nutrition 25:1202–1205

    Google Scholar 

  13. Roessner U, Beckles DM (2009) Metabolite measurements. In: Schwender J (ed) Plant metabolic networks. Springer, New York

    Google Scholar 

  14. Belhadj Slimen I, Najar T, Abderrabba M (2016) Opuntia ficus-indica as a source of bioactive and nutritional phytochemicals. J Food Nutr Sci 4:162–169

    Google Scholar 

  15. Osorio-Esquivel O, Alicia-Ortiz M, Alvarez VB, Dorantes-Alvarez L, Giusti MM (2011) Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Res Int 44:2160–2168

    Article  CAS  Google Scholar 

  16. Paiz RC, Juarez-Flores BI, Aguirre RJR, Cardenas OC, Reyes AJA, Garcia CE, Alvarez FG (2010) Glucose-lowering effect of xoconostle (Opuntia joconostle A. Web. Cactaceae) in diabetic rats. J Med Plant Res 4:2326–2333

    Google Scholar 

  17. Schaffer S, Schmitt-Schillig S, Muller WE, Eckert GP (2005) Antioxidant properties of Mediterranean food plant extracts: geographical differences. J Physiol Pharmacol 56(Suppl S1):115–124

    PubMed  Google Scholar 

  18. Stintzing FC, Schieber A, Carle R (2003) Evaluation of colour properties and chemical quality parameters of cactus juices. Eur Food Res Technol 216:303–311

    Article  CAS  Google Scholar 

  19. Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  PubMed  Google Scholar 

  20. El Gharras H (2009) Polyphenols: food sources, properties and applications. A review. Int J Food Sci Technol 44:2512–2518

    Article  CAS  Google Scholar 

  21. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333

    Article  CAS  PubMed  Google Scholar 

  22. Cheynier V (2005) Polyphenols in foods are more complex than often thought. Am J Clin Nutr 81(Suppl 1):223S–229S

    Article  CAS  PubMed  Google Scholar 

  23. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747

    Article  CAS  PubMed  Google Scholar 

  24. Taiz L, Zeiger E (2009) Fisiologia vegetal, 3rd edn. Artmed, Porto Alegre

    Google Scholar 

  25. Tsao R (2010) Chemistry and biochemistry of dietary polyphenols. Nutrients 2:1231–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de la Rosa LA, Alvarez-Parrilla E, Gonzalez-Aguilar GA (2010) Fruit and vegetable phytochemicals: chemistry, nutritional value, and stability, 1st edn. Wiley-Blackwell, Ames

    Google Scholar 

  27. Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2:377–392

    Google Scholar 

  28. Collin S, Crouzet J (2011) Polyphénols et procédés. Lavoisier, Paris

    Google Scholar 

  29. Ramírez-Ramos M, Medina-Dzul K, García-Mateos R, Corrales-García J, Ybarra-Moncada C, Castillo-González AM (2018) Nutraceutical components, antioxidant activity, and color of 11 varieties of prickly pear (Opuntia sp.). J Appl Bot Food Qual 91:211–218

    Google Scholar 

  30. El-Mostafa K, El Kharrassi Y, Badreddine A, Andreoletti P, Vamecq J, El Kebbaj MS, Latruffe N, Lizard G, Nasser B, Cherkaoui-Malki M (2014) Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules 19:14879–14901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Belhadj Slimen I, Mabrouk M, Hanène C, Najar T, Abderrabba M (2017) LC-MS analysis of phenolic acids, flavonoids and betanin from spineless Opuntia ficus-indica fruits. Cell Biol 5:17–28

    Article  CAS  Google Scholar 

  32. Fernández-López JA, Almela L, Obón JM, Castellar R (2010) Determination of antioxidant constituents in cactus pear fruits. Plant Food Hum Nutr 65:253–259

    Article  CAS  Google Scholar 

  33. Tesoriere L, Fazzari M, Allegra M, Livrea MA (2005) Biothiols, taurine, and lipid-soluble antioxidants in the edible pulp of sicilian cactus pear (Opuntia ficus-indica) fruits and changes of bioactive juice components upon industrial processing. J Agric Food Chem 53:7851–7855

    Article  CAS  PubMed  Google Scholar 

  34. Chougui N, Tamendjari A, Hamidj W, Hallal S, Barras A, Richard T, Larbat R (2013) Oil composition and characterisation of phenolic compounds of Opuntia ficus-indica seeds. Food Chem 139:796–803

    Article  CAS  PubMed  Google Scholar 

  35. Jorge AJ, Toledo Heliodoro DLG, Alejandro ZC, Ruth BC, Noé AC (2013) The optimization of phenolic compounds extraction from cactus pear (Opuntia ficus-indica) skin in a reflux system using response surface methodology. Asian Pac J Trop Biomed 3:436–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dib H, Belarbi M, Beghdad MC, Seladji M (2014) Antioxidant activity of Opuntia ficus-indica flowers phenolic extracts. Pharm Sci Res 5:4574–4582

    Google Scholar 

  37. Ammar I, Ennouri M, Attia H (2015) Phenolic content and antioxidant activity of cactus (Opuntia ficus-indica L.) flowers are modified according to the extraction method. Ind Crop Prod 64:97–104

    Article  CAS  Google Scholar 

  38. Toure HA, Bouatia M, Idrissi MOB, Draoui M (2015) Phytochemical screening and antioxidant activity of aqueous-ethanolic extracts of Opuntia ficus indica. J Chem Pharm Res 7:409–415

    CAS  Google Scholar 

  39. Figueroa-Pérez MG, Pérez-Ramírez IF, Paredes-López O, Mondragón-Jacobo C, Reynoso-Camacho R (2018) Phytochemical composition and in vitro analysis of nopal (O. ficus-indica) cladodes at different stages of maturity. Int J Food Prop 21:1728–1742

    Article  CAS  Google Scholar 

  40. Alves FAL, de Andrade AP, Bruno RLA, Silva MGV, Souza MFV, dos Santos DC (2017) Seasonal variability of phenolic compounds and antioxidant activity in prickly pear cladodes of Opuntia and Nopalea genres. Food Sci 37:536–543

    Google Scholar 

  41. Oniszczuk A, Wójtowicz A, Oniszczuk T, Matwijczuk A, Dib A, Markut-Miotła E (2020) Opuntia fruits as food enriching ingredient, the first step towards new functional food products. Molecules 25(4):916

    Article  CAS  PubMed Central  Google Scholar 

  42. Belhadj Slimen I, Chaabane H, Chaar H, Mabrouk M, Najar T, Aounallah MK, Abderrabba M (2020) Bioactive molecules and pigments in cladodes, fruits and peels of Tunisian Opuntia ficus-indica f. inermis. J Anim Plant Sci 45:7944–7963

    Google Scholar 

  43. Allai L, Karym EM, El Amiri B, Nasseur B, Essamad A, Terzioglu P, Ertas A, Öztürk M (2017) Evaluation of antioxidant activity and phenolic composition of Opuntia ficus-indica cladodes collected from Moroccan Settat region. Eurasian J Anal Chem 12:105–117

    Article  CAS  Google Scholar 

  44. Ouerghemmi I, Harbeoui H, Aidi Wannes W, Bettaieb Rebey I, Hammami M, Marzouk B, Saidani Tounsi M (2017) Phytochemical composition and antioxidant activity of Tunisian cactus pear (Opuntia ficus indica L.) flower. J Food Biochem 41:e12390

    Article  CAS  Google Scholar 

  45. Aruwa CE, Amoo S, Kudanga T (2019) Phenolic compound profile and biological activities of Southern African Opuntia ficus-indica fruit pulp and peels. LWT Food Sci Technol 111:337–344

    Article  CAS  Google Scholar 

  46. Amrane-Abider M, Nerin C, Canellas E, Zeroual B, Hadjal S, Louaileche H (2018) Prickly pear (Opuntia ficus-indica) seeds as a source of phenolic compounds: microwave-assisted extraction optimization and effect on food lipid oxidations. Food Technol 42:23–35

    CAS  Google Scholar 

  47. Kim JW, Kim TB, Yang H, Sung SH (2016) Phenolic compounds isolated from Opuntia ficus-indica fruits. Nat Prod Sci 22:117–121

    Article  CAS  Google Scholar 

  48. Yeddes N, Chérif JK, Guyot S, Baron A, Trabelsi-Ayadi M (2014) Phenolic profile of Tunisian Opuntia ficus indica thornless form flowers via chromatographic and spectral analysis by reversed phase-high performance liquid chromatography-UV-photodiode array and electrospray ionization-mass spectrometer. Int J Food Prop 17:741–775

    Article  CAS  Google Scholar 

  49. De Leo M, Bruzual De Abreu M, Pawlowska AM, Cioni PL, Braca A (2010) Profiling the chemical content of Opuntia ficus-indica flowers by HPLC–PDA-ESI-MS and GC/EIMS analyses. Phytochem Lett 3:48–52

    Article  CAS  Google Scholar 

  50. Igamberdiev AU, Bykova NV (2018) Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants. Free Radic Biol Med 122:74–85

    Article  CAS  PubMed  Google Scholar 

  51. Wiberg KB, Ochterski J, Streitwieser A (1996) Origin of the acidity of enols and carboxylic acids. J Am Chem Soc 118:291–8299

    Article  Google Scholar 

  52. Gadang V, Hettiarachchy N, Johnson M, Owens C (2008) Evaluation of antibacterial activity of whey protein isolate coating incorporated with nisin, grape seed extract, malic acid, and EDTA on a Turkey Frankfurter System. J Food Sci 73:M389–M394

    Article  CAS  PubMed  Google Scholar 

  53. Mokbel MS, Hashinaga F (2005) Antibacterial and antioxidant activities of banana (Musa, AAA cv. Cavendish) fruits peel. Am J Biochem Biotechnol 1:125–131

    Article  Google Scholar 

  54. Ricke S (2003) Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult Sci 82:632–639

    Article  CAS  PubMed  Google Scholar 

  55. Adamson RH, Bridges JW, Evanst ME, Williams RT (1970) Species differences in the aromatization of quinic acid in vivo and the role of gut bacteria. Biochem J 116:437–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bai J, Wu Y, Zhong K, Xiao K, Liu L, Huang Y, Wang Z, Gao H (2018) A comparative study on the effects of quinic acid and shikimic acid on cellular functions of Staphylococcus aureus. J Food Prot 81:1187–1192

    Article  CAS  PubMed  Google Scholar 

  57. Devi B, Bais S, Gill NS (2017) A review on quinic acid and its therapeutic potential. Inventi Rapid Mol Pharm 3:1–6

    Google Scholar 

  58. Inbathamizh L, Padmini E (2013) Quinic acid as a potent drug candidate for prostate cancer: a comparative pharmacokinetic approach. Asian J Pharm Clin Res 6:106–112

    Google Scholar 

  59. Liu L, Liu Y, Zhao J, Xing X, Zhang C, Meng H (2020) Neuroprotective effects of D-(−)-quinic acid on aluminum chloride-induced dementia in rats. Evid Based Complement Alternat Med 2020:1–10

    CAS  Google Scholar 

  60. Cinkilic N, Cetintas SK, Zorlu T, Vatan O, Yilmaz D, Cavas T, Tunc S, Ozkan L, Bilaloglu R (2013) Radioprotection by two phenolic compounds: chlorogenic and quinic acid, on X-ray induced DNA damage in human blood lymphocytes in vitro. Food Chem Toxicol 53:359–363

    Article  CAS  PubMed  Google Scholar 

  61. Arya A, Al-obaidi MMJ, Shahid N, Ibrahim M, Noordin B, Yeng C, Fen W, Lay S, Rais M (2014) Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: a mechanistic study. Food Chem Toxicol 71:183–196

    Article  CAS  PubMed  Google Scholar 

  62. Altekar WW, Rao MR (1963) Microbiological dissimilation of tricarballylate and trans-aconitate. J Bacteriol 85:604–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thompson JF, Schaefer SC, Madison JT (1997) Role of aconitate isomerase in trans-aconitate accumulation in plants. J Agric Food Chem 45:3684–3688

    Article  CAS  Google Scholar 

  64. Miller RE, Cantor SM (1951) Aconitic acid, a by-product in the manufacture of sugar. Adv Carbohydr Chem 6:231–249

    CAS  PubMed  Google Scholar 

  65. Du C, Cao S, Shi Y, Nie X, Zheng J, Deng Y, Ruan L, Peng D, Sun M (2017) Genetic and biochemical characterization of a gene operon for trans-aconitic acid, a novel nematicide from Bacillus thuringiensis. J Biol Chem 292:3517–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim M, Koh HS, Obata T, Fukami H, Ishii S (1976) Isolation and identification of trans-aconitate as the antifeedant in barnyard grass against the brown planthopper Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Appl Entomol Zool 11:53–57

    Article  CAS  Google Scholar 

  67. Sugimoto T, Kato T, Park EY (2014) Functional analysis of cis-aconitate decarboxylase and trans-aconitate metabolism in riboflavin-producing filamentous Ashbya gossypii. J Biosci Bioeng 117:563–568

    Article  CAS  PubMed  Google Scholar 

  68. Kar S, Kar K, Bhattacharya PK, Ghosh DK (1993) Experimental visceral leishmaniasis: role of trans-aconitic acid in combined chemotherapy. Antimicrob Agents Chemother 37:2459–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Oliveira DP, Moreiraa TV, Batistab NV, Filhoc JDS, Amaral FA, Teixeirab MM, Páduaa RM, Braga FC (2018) Esterification of trans-aconitic acid improves its anti-inflammatory activity in LPS-induced acute arthritis. Biomed Pharmacother 99:87–95

    Article  PubMed  CAS  Google Scholar 

  70. Kallistratos G, Kallistratos U (1976) 3,4-Benzopyrene carcinogenesis and its inhibition by natural and synthetic compounds. Folia Biochim Biol Graeca 13:1–10

    CAS  Google Scholar 

  71. Morrison RT, Boyd RN (1985) Chemia organiczna, 4th edn. Państwowe Wydawnictwo Naukowe, Warszawa, p 966

    Google Scholar 

  72. Smith JG (2011) Organic chemistry, 3rd edn. McGraw-Hill, New York, p 1285

    Google Scholar 

  73. Sobiesiak M (2016) Chemical structure of phenols and its consequence for sorption processes. In: Soto-Hernandez M, Palma Tenango M, Garcia-Mateos R (eds) Phenolic compounds – natural sources, importance and applications. IntechOpen, London

    Google Scholar 

  74. Clifford MN (1999) Chlorogenic acids and their cinnamates – nature, occurrence, and dietary burden. J Sci Food Agric 79:362–372

    Article  CAS  Google Scholar 

  75. Khoddami A, Wilkes MA, Roberts TH (2013) Techniques of analysis of plan phenolic compounds. Molecules 18:2328–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Croft KD (1998) The chemistry and biological effects of flavonoids and phenolic acids. Ann N Y Acad Sci 854:435–442

    Article  CAS  PubMed  Google Scholar 

  77. Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signalling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lyu SW, Blum U, Gerig TM, O’Brien TE (1990) Effects of mixtures of phenolic acids on phosphorous uptake by cucumber seedlings. J Chem Ecol 16:2559–2567

    Article  CAS  PubMed  Google Scholar 

  79. Kahkeshani N, Farzaei F, Fotouhi M et al (2019) Pharmacological effects of gallic acid in health and diseases: a mechanistic review. Iran J Basic Med Sci 22:225–237

    PubMed  PubMed Central  Google Scholar 

  80. Nayeem N, Asdaq SMB, Salem H, Ahel-Alfqy S (2016) Gallic acid: a promising lead molecule for drug development. J Appl Pharmacol 8:1000213

    Article  CAS  Google Scholar 

  81. Silva ACPE, Costa-Orlandi CB, Gullo FP, Sangalli-Leite F, de Oliveira HC et al (2014) Antifungal activity of decyl gallate against several species of pathogenic fungi. Evid Based Complement Alternat Med 2014:506273

    PubMed  PubMed Central  Google Scholar 

  82. Prasad CN, Anjana T, Banerji A, Gopalakrishnapillai A (2010) Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett 584:531–536

    Article  PubMed  CAS  Google Scholar 

  83. Kratz JM, Andrighetti-Frahner CR, Kolling DJ, Leal PC, Cirne-Santos CC et al (2008) Anti-HSV-1 and anti-HIV-1 activity of gallic acid and pentyl gallate. Mem Inst Oswaldo Cruz 103:437–442

    Article  CAS  PubMed  Google Scholar 

  84. Karamaæ M, Kosiñska A, Pegg RB (2005) Comparison of radical-scavenging activities of selected phenolic acids. Pol J Food Nutr Sci 14:165–170

    Google Scholar 

  85. Kaur S, Michael H, Arora S, Harkonen PL, Kumar S (2005) The in vitro cytotoxic and apoptotic activity of Triphala – an Indian herbal drug. J Ethnopharmacol 97:15–20

    Article  CAS  PubMed  Google Scholar 

  86. Saeki K, You A, Isemura M, Abe I, Seki T et al (2000) Apoptosis inducing activity of lipid derivatives of gallic acid. Biol Pharm Bull 23:1391–1394

    Article  CAS  PubMed  Google Scholar 

  87. Borges A, Ferreira C, Saavedra MJ, SimÃμes M (2013) Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist 19:256–265

    Article  CAS  PubMed  Google Scholar 

  88. Roberto DG, Remigio LS, Elias OS, Hector TA (2013) Comparative antibacterial effect of gallic acid and catechin against Helicobacter pylori. Food Sci Technol 54:331–335

    Google Scholar 

  89. Chhillar R, Dhingra D (2013) Antidepressant-like activity of gallic acid in mice subjected to unpredictable chronic mild stress. Fundam Clin Pharmacol 27:409–418

    Article  CAS  PubMed  Google Scholar 

  90. Chen JJ (2004) Neuroprotection in Parkinson’s disease. Medscape

    Google Scholar 

  91. Griffith R, Chanphen R, Leach SP, Keller PA (2002) New anti-malarial compounds from database searching. Bioorg Med Chem Lett 12:539–542

    Article  CAS  PubMed  Google Scholar 

  92. Ramya K, Mohandas SR, Ashok KJ (2014) Evaluation of diuretic activity of gallic acid in normal rats. J Sci Innov Res 3:217–220

    Article  Google Scholar 

  93. Nayeem N, Karvekar MD (2011) Stability studies and evaluation of the semisolid dosage form of the rutin, quercitin, ellagic acid, gallic acid and sitosterol isolated from the leaves of Tectona grandis for wound healing activity. Arc App Sci Res 3:43

    CAS  Google Scholar 

  94. Ndjonka D, Abladam ED, Djafsia B, Ajonina-Ekoti I, Achukwi MD et al (2014) Anthelmintic activity of phenolic acids from the axlewood tree Anogeissus leiocarpus on the filarial nematode Onchocerca ochengi and drug-resistant strains of the free-living nematode Caenorhabditis elegans. J Helminthol 88:481–488

    Article  CAS  PubMed  Google Scholar 

  95. Dhingra D, Chhillar R, Gupta A (2012) Antianxiety-like activity of gallic acid in unstressed and stressed mice: possible involvement of nitriergic system. Neurochem Res 37:487–494

    Article  CAS  PubMed  Google Scholar 

  96. Szumiło J (2005) Kwas protokatechowy w prewencji nowotworów (Protocatechuic acid in cancer prevention). Postepy Hig Med Dosw 59:608–615

    Google Scholar 

  97. Kakkar S, Bais S (2014) A review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol 2014:1–9

    Article  Google Scholar 

  98. Sova M (2012) Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev Med Chem 12:749–767

    Article  CAS  PubMed  Google Scholar 

  99. Natella F, Nardini M, Di Felice M, Scaccini C (1999) Benzoic and cinnamic acid derivatives as antioxidants: structure–activity relation. J Agric Food Chem 47:1453–1459

    Article  CAS  PubMed  Google Scholar 

  100. De Vita D, Friggeri L, D’Auria FD, Pandolfi F, Piccoli F, Panella S et al (2014) Activity of caffeic acid derivatives against Candida albicans biofilm. Bioorg Med Chem Lett 24:1502–1505

    Article  PubMed  CAS  Google Scholar 

  101. Zhang BY, Lv C, Li WB, Cui ZM, Chen DD, Cao FJ (2015) Ethyl cinnamate derivatives as promising high-efficient acaricides against Psoroptes cuniculi: synthesis, bioactivity and structure–activity relationship. Chem Pharm Bull 63:255–262

    Google Scholar 

  102. Zhou K, Chen D, Li B, Zhang B, Miao F, Zhou L (2017) Bioactivity and structure-activity relationship of cinnamic acid esters and their derivatives as potential antifungal agents for plant protection. PLoS One 12(4):e0176189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. De P, Baltas M, Bedos-Belval F (2011) Cinnamic acid derivatives as anticancer agents – a review. Curr Med Chem 18:1672–1703

    Article  CAS  PubMed  Google Scholar 

  104. Debnath B, Samanta S, Roy K, Jha T (2003) QSAR study on some p-arylthio cinnamides as antagonists of biochemical ICAM-1/LFA-1 interaction and ICAM-1/JY-8 cell adhesion in relation to anti-inflammatory activity. Bioorg Med Chem 11:1615–1619

    Article  CAS  PubMed  Google Scholar 

  105. Lee SU, Shin CG, Lee CK, Lee YS (2007) Caffeoylglycolic and caffeoylamino acid derivatives, halfmers of L-chicoric acid, as new HIV-1 integrase inhibitors. Eur J Med Chem 42:1309–1315

    Article  CAS  PubMed  Google Scholar 

  106. Otero E, Robledo SM, Díaz S, Carda M, Muñoz D, Paños J et al (2014) Synthesis and leishmanicidal activity of cinnamic acid esters: structure–activity relationship. Med Chem Res 23:1378–1386

    Article  CAS  Google Scholar 

  107. Kuhnert N, Said HI, Jaiswal R (2014) Assignment of regio- and stereochemistry of natural products using mass spectrometry: chlorogenic acids and derivatives as a case study. Stud Nat Prod Chem 42:305–339

    Article  CAS  Google Scholar 

  108. Tajik N, Tajik M, Mack I, Enck P (2017) The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: a comprehensive review of the literature. Eur J Nutr 56:1379–1381

    Article  Google Scholar 

  109. Meng S, Cao J, Feng Q, Peng J, Hu Y (2013) Roles of chlorogenic acid on regulating glucose and lipids metabolism: a review. Evid Based Complement Alternat Med 2013:1–11

    Article  Google Scholar 

  110. Kilic I, Yesiloglu Y (2013) Spectroscopic studies on the antioxidant activity of p-coumaric acid. Spectrochim Acta A Mol Biomol Spectrosc 115:719–724

    Article  CAS  PubMed  Google Scholar 

  111. Guglielmi F, Luceri C, Giovannelli L, Dolara P, Lodovici M (2003) Effect of 4-coumaric and 3,4-dihydroxybenzoic acid on oxidative DNA damage in rat colonic mucosa. Br J Nutr 89:581–587

    Article  CAS  PubMed  Google Scholar 

  112. Boz H (2015) p-Coumaric acid in cereals: presence, antioxidant and antimicrobial effects. Int J Food Sci Technol 50:2323–2328

    Article  CAS  Google Scholar 

  113. Pragasam SJ, Venkatesan V, Rasool M (2013) Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation 36:169–176

    Article  CAS  PubMed  Google Scholar 

  114. Roy N, Narayanankutty A, Nazeem PA, Valsalan R, Babu TD, Mathew D (2016) Plant phenolics ferulic acid and p-coumaric acid inhibit colorectal cancer cell proliferation through EGFR down-regulation. Asian Pac J Cancer Prev 17:4019–4023

    PubMed  Google Scholar 

  115. Sharma SH, Rajamanickam V, Nagarajan S (2018) Antiproliferative effect of p-coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem Biol Interact 291:16–28

    Article  CAS  PubMed  Google Scholar 

  116. Boo YC (2019) p-Coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects. Molecules 8:275

    CAS  Google Scholar 

  117. Contardi M, Alfaro-Pulido A, Picone P, Guzman-Puyol S, Goldoni L, Benitez J, Heredia A, Barthel MJ, Ceseracciu L, Cusimano G et al (2019) Low molecular weight epsilon-caprolactone-p-coumaric acid copolymers as potential biomaterials for skin regeneration applications. PLoS One 14:e0214956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Graf E (1992) Antioxidant potential of ferulic acid. Free Radic Biol Med 13:435–448

    Article  CAS  PubMed  Google Scholar 

  119. Mancuso C, Scapagini G, Currò D et al (2007) Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 12:1107–1123

    Article  CAS  PubMed  Google Scholar 

  120. Fukuoka K, Sawabe A, Sugimoto T et al (2004) Inhibitory actions of several natural products on proliferation of rat vascular smooth muscle cells induced by Hsp60 from Chlamydia pneumoniae J138. J Agric Food Chem 52:6326–6329

    Article  CAS  PubMed  Google Scholar 

  121. Macías-Cruz U, Vicente-Pérez R, López-Baca MA, González-Ríos H, Correa-Calderón A, Arechiga CF et al (2018) Effects of dietary ferulic acid on reproductive function and metabolism of pre-pubertal hairbreed ewes during the anestrous season. Theriogenology 119:220–224

    Article  PubMed  CAS  Google Scholar 

  122. Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93

    Article  CAS  Google Scholar 

  123. Mancuso C, Santangelo R (2014) Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol 65:185–195

    Article  CAS  PubMed  Google Scholar 

  124. Kim JK, Park SU (2019) A recent overview on the biological and pharmacological activities of ferulic acid. EXCLI J 18:132–138

    PubMed  PubMed Central  Google Scholar 

  125. Bourne LC, Rice-Evans C (1998) Bioavailability of ferulic acid. Biochem Biophys Res Commun 253:222–227

    Article  CAS  PubMed  Google Scholar 

  126. Dalbem L, Costa Monteiro C-M, Anderson J-T (2012) Anticancer properties of hydroxycinnamic acids – a review. Canc Clinic Oncol 1:109–121

    Google Scholar 

  127. Saija A, Tomaino A, Lo Cascio R, Trombetta D, Proteggente A, De Pasquale A, Uccela N, Bonina F (1999) Ferulic and caffeic acids as potential protective agents against photooxidative skin damage. J Sci Food Agric 79:476–480

    Article  CAS  Google Scholar 

  128. Marti-Mestres G, Mestres JP, Bres J, Martin S, Ramos J, Viana L (2007) The “in vitro” percutaneous penetration of three antioxidant compounds. Int J Pharm 331:139–144

    Article  CAS  PubMed  Google Scholar 

  129. Saija A, Tomaino A, Trombetta D, De Pasquale A, Uccella N, Barbuzzi T, Paolino D, Bonina F (2000) In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int J Pharm 199:39–47

    Article  CAS  PubMed  Google Scholar 

  130. Shahrzad S, Bitsch I (1996) Determination of some pharmacology active phenolic acids in juices high perfomance liquid chromatography. J Chromatogr A 742:223–231

    Article  Google Scholar 

  131. Bonina F, Lanza M, Montenegro L, Puglisi C, Tomaino A, Trombetta D, Castelli F, Saija A (1996) Flavonoids as potential protective agents against photo-oxidative skin damage. Int J Pharm 94:145–187

    Google Scholar 

  132. Almajano MP, Carb’o R, Delgado ME, Gordon MH (2007) Effect of pH on the antimicrobial activity and oxidative stability of oil-in-water emulsions containing caffeic acid. J Food Sci 72:C258–C263

    Article  CAS  PubMed  Google Scholar 

  133. Branen AL (1993) Introduction to the use of antimicrobials. In: Davidson PP, Branen AL (eds) Antimicrobials in foods. Marcel Dekker, New York

    Google Scholar 

  134. Espíndola KMM, Ferreira RG, Narvaez LEM, Silva Rosario ACR, da Silva AHM, Silva AGB, Vieira APO, Monteiro MC (2019) Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front Oncol 9:541

    Article  PubMed  PubMed Central  Google Scholar 

  135. Weyant MJ, Carothers AM, Bertagnolli ME, Bertagnolli MM (2000) Colon cancer chemo preventive drugs modulate integrin-mediated signaling pathways. Clin Cancer Res 6:949–956

    CAS  PubMed  Google Scholar 

  136. Michaluart P, Masferrer JL, Carothers AM, Subbaramaiah K, Zweifel BS, Kobolt C (1999) Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. Cancer Res 59:2347–2352

    CAS  PubMed  Google Scholar 

  137. Hirose M, Takesada Y, Tanaka H, Tamano S, Kato T, Shirai T (1998) Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination, and modulation of their effects in a rat medium-term multi-organ carcinogenesis model. Carcinogenesis 19:207–212

    Article  CAS  PubMed  Google Scholar 

  138. Sharma S, Ali A, Ali J, Sahni JK, Baboota S (2013) Rutin: therapeutic potential and recent advances in drug delivery. Expert Opin Investig Drugs 22:1063–1079

    Article  CAS  PubMed  Google Scholar 

  139. Kaur C, Kapoor HC (2001) Antioxidants in fruits and vegetables – the millennium’s health. Int J Food Sci Technol 36:703–725

    Article  CAS  Google Scholar 

  140. Rice-Evans CA, Miller J, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  141. Materska M (2008) Quercetin and its derivatives: chemical structure and bioactivity – a review. Pol J Food Nutr Sci 58:407–413

    CAS  Google Scholar 

  142. Ninomiya M, Koketsu M (2013) Minor flavonoids (chalcones, flavanones, dihydrochalcones, and aurones). In: Ramawat K, Mérillon JM (eds) Natural products. Springer, Berlin/Heidelberg

    Google Scholar 

  143. Man M-Q, Yang B, Elias PM (2019) Benefits of hesperidin for cutaneous functions. Evid Based Complement Alternat Med 2019:1–19

    Article  Google Scholar 

  144. Renugadevi J, Prabu SM (2009) Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology 256:128–134

    Article  CAS  PubMed  Google Scholar 

  145. Jung UJ, Kim HJ, Lee JS, Lee MK, Kim HO, Park EJ, Kim HK, Jeong TS, Choi MS (2003) Naringin supplementation lowers plasma lipids and enhances erythrocyte antioxidant enzyme activities in hypercholesterolemic subjects. Clin Nutr 22:561–568

    Article  CAS  PubMed  Google Scholar 

  146. Alam MA, Subhan N, Rahman MM, Uddin SJ, Reza HM, Sarker SD (2014) Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr 5:404–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen R, Qi Q-L, Wang T-M, Li Q-Y (2016) Therapeutic potential of naringin: an overview. Pharm Biol 54:3203–3210

    Article  CAS  PubMed  Google Scholar 

  148. Tsao R, Deng Z (2004) Separation procedures for naturally occurring antioxidant hytochemicals. J Chromatogr B Anal Technol Biomed Life Sci 812:85–99

    Article  CAS  Google Scholar 

  149. Decker EA (2003) Natural antioxidants in foods. In: Encyclopedia of physical science and technology. Wiley, New York, pp 335–342

    Chapter  Google Scholar 

  150. Brockington SF, Yang Y, Gandia-Herrero F, Covshoff S, Hibberd JM, Sage RF, Wong GK, Moore MJ, Smith SA (2015) Lineage-specific gene radiations underlie the evolution of novel betalain pigmentation in Caryophyllales. New Phytol 207:1170–1180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Minale L, Piattelli M, Nicolaus RA (1965) Pigments of centrospermae – IV. On the biogenesis of indicaxanthin and betanin in Opuntia ficus-indica. Phytochemistry 4:593–597

    Article  CAS  Google Scholar 

  152. Piattelli M, Minale L (1964) Pigments of centrospermae – I. Betacyanins from Phyllocactus hybridus Hort. and Opuntia ficus-indica Mill. Phytochemistry 3:307–311

    Article  CAS  Google Scholar 

  153. Yeddes N, Chérif JK, Guyot S, Sotin H, Ayadi MT (2013) Comparative study of antioxidant power, polyphenols, flavonoids and betacyanins of the peel and pulp of three Tunisian Opuntia forms. Antioxidants 2:37–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stintzing FC, Schieber A, Carle R (2001) Phytochemical and nutritional significance of cactus pear. Eur Food Res Technol 212:396–407

    Article  CAS  Google Scholar 

  155. Castellanos-Santiago E, Yahia EM (2008) Identification and quantification of betalains from the fruits of 10 Mexican prickly pear cultivars by high-performance liquid chromatography and electrospray ionization mass spectrometry. J Agric Food Chem 56:5758–5764

    Article  CAS  PubMed  Google Scholar 

  156. Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochemistry 62:247–269

    Article  CAS  PubMed  Google Scholar 

  157. Stintzing FC, Herbach KM, Mosshammer MR, Carle R, Yi W, Sellappan S, Akoh CC, Bunch R, Felker P (2005) Color, betalain pattern, and antioxidant properties of cactus pear (Opuntia spp.) clones. J Agric Food Chem 53:442–451

    Article  CAS  PubMed  Google Scholar 

  158. Kanner J, Harel S, Granit R (2001) Betalains – a new class of dietary antioxidants. J Agric Food Chem 49:5178–5185

    Article  CAS  PubMed  Google Scholar 

  159. Gandía-Herrero F, Escribano J, García-Carmona F (2010) Structural implications on color, fluorescence, and antiradical activity in betalains. Planta 232:449–460

    Article  PubMed  CAS  Google Scholar 

  160. Cai YZ et al (2005) Characterization and application of betalain pigments from plants of the Amaranthaceae. Trends Food Sci Technol 16:370–376

    Article  CAS  Google Scholar 

  161. Cai Y, Sun M, Corke H (2003) Antioxidant activity of betalains from plants of the Amaranthaceae. J Agric Food Chem 51:2288–2294

    Article  CAS  PubMed  Google Scholar 

  162. Zhang J, Hou X, Ahmad H, Zhang H, Zhang L, Wang T (2014) Assessment of free radicals scavenging activity of seven natural pigments and protective effects in AAPH-challenged chicken erythrocytes. Food Chem 145:57–65

    Article  CAS  PubMed  Google Scholar 

  163. Gandía-Herrero F, Escribano J, García-Carmona F (2012) Purification and antiradical properties of the structural unit of betalains. J Nat Prod 75:1030–1036

    Article  PubMed  CAS  Google Scholar 

  164. Taira J, Tsuchida E, Katoh MC, Uehara M, Ogi T (2015) Antioxidant capacity of betacyanins as radical scavengers for peroxyl radical and nitric oxide. Food Chem 166:531–536

    Article  CAS  PubMed  Google Scholar 

  165. Butera D, Tesoriere L, Di Gaudio F, Bongiorno A, Allegra M, Pintaudi AM, Kohen R, Livrea MA (2002) Antioxidant activities of sicilian prickly pear (Opuntia ficus indica) fruit extracts and reducing properties of its betalains: betanin and indicaxanthin. J Agric Food Chem 50:6895–6901

    Article  CAS  PubMed  Google Scholar 

  166. Belhadj Slimen I, Najar T, Abderrabba M (2017) Chemical and antioxidant properties of betalains. J Agric Food Chem 65:675–689

    Article  CAS  PubMed  Google Scholar 

  167. Hooper PL, Hooper PL, Tytell M, Vígh L (2010) Xenohormesis: health benefits from an eon of plant stress response evolution. Cell Stress Chaperones 15:761–770

    Article  PubMed  PubMed Central  Google Scholar 

  168. Belhadj Slimen I, Chabaane H, Chniter M, Mabrouk M, Ghram A, Miled K, Behi I, Abdrrabba M, Najar T (2019) Thermoprotective properties of Opuntia ficus-indica f. inermis cladodes and mesocarps on sheep lymphocytes. J Therm Biol 81:73–81

    Article  PubMed  Google Scholar 

  169. Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids hand book. Birkhäuser, Basel

    Book  Google Scholar 

  170. Britton G, Liaaen-Jensen S, Pfander H (2008) Carotenoids: natural functions, 4th edn. Birkhäuser Verlag, Basel, p 400

    Book  Google Scholar 

  171. Maoka T (2019) Carotenoids as natural functional pigments. J Nat Med 74:1–16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Rodriguez-Concepcion M, Avalos J, Bonet ML, Boronat A, Gomez-Gomez L, Hornero-Mendez D, Limon MC, Meléndez-Martínez AJ, Olmedilla-Alonso B, Palou A, Ribot J, Rodrigo MJ, Zacarias L, Zhu C (2018) A global perspective on carotenoids: metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93

    Article  CAS  PubMed  Google Scholar 

  173. González-Cruz L, Filardo-Kerstupp S, Bello-Pérez LA, Güemes-Vera N, BernardinoNicanor A (2012) Carotenoid content, antioxidant activity and sensory evaluation of low-calorie nopal (Opuntia ficus-indica) marmalade. J Food Process Preserv 36:267–275

    Article  CAS  Google Scholar 

  174. de Wit M, Du Toit A, Osthoff G, Hugo A (2019) Cactus pear antioxidants: a comparison between fruit pulp, fruit peel, fruit seeds and cladodes of eight different cactus pear cultivars (Opuntia ficus-indica and Opuntia robusta). J Food Meas Charact 13:2347–2356

    Article  Google Scholar 

  175. Cano MP, Gómez-Maqueo A, García-Cayuela T, Welti-Chanes J (2017) Characterization of carotenoid profile of Spanish Sanguinos and Verdal prickly pear (Opuntia ficus-indica, spp.) tissues. Food Chem 237:612–622

    Article  CAS  PubMed  Google Scholar 

  176. Chougui N, Louaileche H, Mohedeb S, Mouloudj Y, Hammoui Y, Tamendjari A (2013) Physico-chemical characterisation and antioxidant activity of some Opuntia ficus-indica varieties grown in North Algeria. Afr J Biotechnol 12:299–307

    Article  CAS  Google Scholar 

  177. Kuti JO (2004) Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem 85:527–533

    Article  CAS  Google Scholar 

  178. Leopoldo GC, Santiago FK, Arturo B-PL, Norma GV, Aurea BN (2012) Carotenoid content, antioxidant activity and sensory evaluation of law-calorie nopal (Opuntia ficus-indica) marmalade. J Food Process Preserv 36:267–275

    Article  CAS  Google Scholar 

  179. Hadj Sadok T, Aid F, Bellal M, Abdul Hussain MS (2008) Composition chimique des jeunes cladodes d’Opunta ficus-indica et possibilités de valorisation alimentaire. Agricultura Stiinta si Practica 1:65–66

    Google Scholar 

  180. Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27

    Article  CAS  PubMed  Google Scholar 

  181. Baltschun D, Beutner S, Briviba K, Martin HD, Paust J, Peters M, Röver S, Sies H, Stahl W, Steigel A, Stenhorst F (1997) Singlet oxygen quenching abilities of carotenoids. Liebigs Ann 1997:1887–1893

    Article  Google Scholar 

  182. Sies H, Stahl W (1995) Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr 62:1315S–1321S

    Article  CAS  PubMed  Google Scholar 

  183. Berni P, Chitchumroonchokchai C, Canniatti-Brazaca GS, De Moura FF, Failla LM (2015) Comparison of content and in vitro bioaccessibility of provitamin A carotenoids in home cooked and commercially processed orange fleshed sweet potato (Ipomea batatas Lam). Plant Foods Hum Nutr 70:1–8

    Article  CAS  PubMed  Google Scholar 

  184. Faure H, Galabert G, Le Moel G, Nabet F (1999) Carotenoids: metabolism and physiology. Ann Biol Clin 57:169–183

    CAS  Google Scholar 

  185. Krisky NI, Cornwell DG, Oncley JL (1988) The transport of carotenoids in human plasma. Arch Biochem Biophys 73:233–246

    Article  Google Scholar 

  186. Kopec ER, Jessica L, Cooperstone LJ, Schweiggert MR, Young SG, Harrison EH, Francis MD, Steven K, Clinton KS, Schwartz JS (2014) Avocado consumption enhances human postprandial provitamin A absorption and conversion from a novel high-β-carotene tomato sauce and from carrots. J Nutr 8:1158–1166

    Article  CAS  Google Scholar 

  187. Kiokias S, Proestos C, Varzakas T (2016) A review of the structure, biosynthesis, absorption of carotenoids – analysis and properties of their common natural extracts. Curr Res Nutr Food Sci 4:25–37

    Article  Google Scholar 

  188. Hassanien MFR, Mörsel JT (2003) Agro-waste products from prickly pear fruit processing as a source of oil. Fruit Proc 13:242–248

    Google Scholar 

  189. Ramadan MF, Mörsel J-T (2003) Oil cactus pear (Opuntia ficus-indica L.). Food Chem 82:339–345

    Article  CAS  Google Scholar 

  190. Ramadan MF, Mörsel J-T (2003) Recovered lipids from prickly pear [Opuntia ficus-indica (L.) Mill] peel: a good source of polyunsaturated fatty acids, natural antioxidant vitamins and sterols. Food Chem 83:447–456

    Article  CAS  Google Scholar 

  191. El-Said NM, Nagib AI, Rahman ZA, Deraz SF (2010) Prickly pear [Opuntia ficus-indica (L.) Mill] peels: chemical composition, nutritional value, and protective effects on liver and kidney functions and cholesterol in rats. Func Plant Sci Biotechnol 5:30–35

    Google Scholar 

  192. Ghazi Z, Ramdani M, Fauconnier ML, El Mahi B, Cheikh R (2013) Fatty acids sterols and vitamin E composition of seed oil of Opuntia ficus-indica and Opuntia dillenii from Morroco. J Mater Envir Sci 4:967–972

    CAS  Google Scholar 

  193. Wlodek L (2002) Beneficial and harmful effects of thiols. Pol J Pharmacol 54:215–223

    CAS  PubMed  Google Scholar 

  194. Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, Bachovchin DA, Mowen K, Baker D, Cravatt BF (2010) Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468(7325):790–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Jolanta D, Wojciech K (2011) Oxidative DNA damageand the level of biothiols, and L-Dopa therapy in Parkinson’s disease. In: Qayyum Rana A (ed) Etiology and pathophysiology of Parkinson’s disease. IntechOpen, London

    Google Scholar 

  196. Demirkol O, Adams C, Ercal N (2004) Biologically important thiols in various vegetables and fruits. J Agric Food Chem 52:8151–8154

    Article  CAS  PubMed  Google Scholar 

  197. Grisham MB, Jefferson M, Melton DF, Thomas EL (1984) Chlorination by endogenous amines by isolated neutrophils. J Biol Chem 259:10404–10413

    Article  CAS  PubMed  Google Scholar 

  198. McCarty MF (1999) The reported clinical utility of taurine in ischemic disorders may reflect a down-regulation of neutrophil activation and adhesion. Med Hypotheses 53:290–299

    Article  CAS  PubMed  Google Scholar 

  199. Wu QD, Wang JH, Fennessy F, Redmond HP, Bouchier Hayes D (1999) Taurine prevents high glucose-induced human vascular endothelial cell apoptosis. Am J Phys 277:C1229–C1238

    Article  CAS  Google Scholar 

  200. Devamanoharan PS, Ali AH, Varma SD (1998) Oxidative stress to rat lens in vitro: protection by taurine. Free Radic Res 29:189–195

    Article  CAS  PubMed  Google Scholar 

  201. Ripps H, Shen W (2012) Review. Taurine: a “very essential amino acid”. Mol Vis 18:2673–2686

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Stintzing FC, Schieber A, Carle R (1999) Amino acid composition and betaxanthin formation in fruits from Opuntia ficus-indica. Planta Med 65:632–635

    Article  CAS  PubMed  Google Scholar 

  203. Ramadan MF, Moersel J-T (2003) Lipid profile of prickly pear pulp fractions. J Food Agric Environ 1:66–70

    CAS  Google Scholar 

  204. Andreu-Coll L, Cano-Lamadrid M, Sendra E, Carbonell-Barrachina Á, Legua P, Hernández F (2019) Fatty acid profile of fruits (pulp and peel) and cladodes (young and old) of prickly pear [Opuntia ficus-indica (L.) Mill.] from six Spanish cultivars. J Food Compos Anal 84:103294

    Article  CAS  Google Scholar 

  205. De Wit M, Hugo A, Shongwe N (2017) Quality assesment of seed oil from selected cactus pear cultivars (Opuntia ficus-indica and Opuntia robusta). J Food Process Preserv 41:e12898

    Article  CAS  Google Scholar 

  206. Gurr MI, Harwood JL, Frayn K (2002) Lipid biochemistry, 5th edn. Blackwell, London

    Book  Google Scholar 

  207. Tlili N, Bargougui A, Elfalleh W, Triki S, Nasri N (2011) Phenolic compounds, protein, lipid content and fatty acid compositions of cactus seeds. J Med Plant Res 5:4519–4524

    CAS  Google Scholar 

  208. Ennouri M, Evelyne B, Laurence M, Hamadi A (2005) Fatty acid composition and rheological behaviour of prickly pear seed oils. Food Chem 93:431–437

    Article  CAS  Google Scholar 

  209. Calder PC (2008) Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol Nutr Food Res 52:885–897

    Article  CAS  PubMed  Google Scholar 

  210. Serra AT, Poejo J, Matias AA, Bronze MR, Duarte CMM (2013) Evaluation of Opuntia spp. derived products as antiproliferative agents in human colon cancer cell line (HT29). Food Res Int 54:892–901

    Article  CAS  Google Scholar 

  211. Rodríguez-Cruz M, Tovar A, del Prado M, Torres N (2005) Mecanismos moleculares de los ácidos grasos poliinsaturados y sus beneficios. Rev Investig Clin 57:457–472

    Google Scholar 

  212. Letawe C, Boone M, Piérard GE (1998) Digital image analysis of the effect of topically applied linoleic acid on acne microcomedones. Clin Exp Dermatol 23:56–58

    Article  CAS  PubMed  Google Scholar 

  213. Darmstadt GL, Mao QM, Chi E, Saha SK, Ziboh VA, Black RE, Santosham M, Elias PM (2002) Impact of topical oils on the skin barrier: possible implications for neonatal health in developing countries. Acta Paediatr 91:546–554

    Article  CAS  PubMed  Google Scholar 

  214. Simopoulos AP (2002) The importance of the ratio of omega-6/omega3 essential fatty acids. Biomed Pharmacol 56:365–379

    Article  CAS  Google Scholar 

  215. Bradford PG, Awad AB (2007) Phytosterols as anticancer compounds. Mol Nutr Food Res 51:161–170

    Article  CAS  PubMed  Google Scholar 

  216. Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110:597–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Beck JG, Mathieu D, Loudet C, Buchoux S, Dufourc EJ (2007) Plant sterols in “rafts”: a better way to regulate membrane thermal shocks. FASEB J 21:1714–1723

    Article  CAS  PubMed  Google Scholar 

  218. Dufourc EJ (2008) The role of phytosterols in plant adaptation to temperature. Plant Signal Behav 3:133–134

    Article  PubMed  PubMed Central  Google Scholar 

  219. Abed El Aziz MM, Ashour AS, Gomha Melad AS (2019) A review on saponins from medicinal plants: chemistry, isolation, and determination. J Nanomed Res 7:282–288

    Article  Google Scholar 

  220. Sparg SG, Light ME, van Staden J (2004) Biological activities and distribution of plant saponins. J Ethnopharmacol 94:219–243

    Article  CAS  PubMed  Google Scholar 

  221. Sindambiwe JB, Calomme M, Geerts S et al (1998) Evaluation of biological activities of triterpenoid saponins from Maesa lanceolata. J Nat Prod 61:585–590

    Article  CAS  PubMed  Google Scholar 

  222. Simões CMO, Amoros M, Girre L (1999) Mechanism of antiviral activity of triterpenoid saponins. Phytother Res 13:323–328

    Article  PubMed  Google Scholar 

  223. De Geyter E, Lambert E, Geelen D et al (2007) Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol 1:96–105

    Google Scholar 

  224. Just MJ, Recio MC, Giner RM et al (1998) Anti-inflammatory activity of unusual lupane saponins from Bupleurum fruticescens. Planta Med 64:404–407

    Article  CAS  PubMed  Google Scholar 

  225. Armelle TM, Ndontsa BL, Kuete V et al (2018) A naturally occurring triterpene saponin ardisiacrispin B displayed cytotoxic effects in multi-factorial drug resistant cancer cells via ferroptotic and apoptotic cell death. Phytomedicine 43:78–85

    Article  CAS  Google Scholar 

  226. Cheng TC, Lu JF, Wang JS et al (2011) Antiproliferation effect and apoptosis mechanism of prostate cancer cell PC-3 by flavonoids and saponins prepared from Gynostemma pentaphyllum. J Agric Food Chem 59:11319–11329

    Article  CAS  PubMed  Google Scholar 

  227. Halmi S, Madi A, Zeghad N, Berouel K, Hamdi Pacha Y (2018) Effect of Opuntia ficus-indica on antioxidant activity and lipid profile of experimental rats ingested thermally oxidized oil. Eur J Med Plants 23:1–10

    Article  Google Scholar 

  228. Touré HA, Bouatia M, Alouani I, Idrissi MOB, HmamouchI M, Draoui M (2016) Nutritive and anti-nutritive composition of Moroccan Opuntia ficus-indica cladodes and fruits. Res J Pharm Biol Chem Sci 7:1275–1281

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Belhadj Slimen, I., Najar, T., Abderrabba, M. (2021). Bioactive Compounds of Prickly Pear [Opuntia ficus-indica (L.) Mill.]. In: Murthy, H.N., Paek, K.Y. (eds) Bioactive Compounds in Underutilized Vegetables and Legumes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-57415-4_12

Download citation

Publish with us

Policies and ethics