Skip to main content

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 192))

  • 675 Accesses

Abstract

There is no doubt that the image has become the most common source of information in all ways as it carries a huge amount of natural descriptions about the corresponding scene. Recently, biomedical images-based applications have received more attention from the image processing and health informatics research communities. Principally, biomedical image processing has become interesting in its multidisciplinary nature. The medical image processing can be executed in 2D, 3D or even multi-dimensional images to extract useful information. These images serve in the ultimate goals of clinical activities such as monitoring, diagnosis, localization, and treatment. Nowadays, there is an inevitable need to get a concrete surgery system to help and automate the clinical workflow to solve in a shorter period. As well, providing the medical images in high quality and fascinating storage may contribute in such surgery systems. Therefore, in this chapter, we shortly cover core principal medical image processing techniques, image enhancement, and compression. We consider to cover these techniques as they handle the most two challenges in biomedical imaging, which are image quality and image storage/transmission. We focus on three main types of medical images: magnetic resonance imaging (MRI), X-ray/computed tomography (CT), and Ultrasound images. Furthermore, we report the usage of image processing-based techniques in the recent medical imaging systems and technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahad, M.A.R., Kobashi, S., Tavares, J.: Advancements of image processing and vision in healthcare. J. Healthcare Eng. 2018 (2018)

    Google Scholar 

  2. Daley, B.: 3 types of MRI machines and the difference between an open MTI versus a closed MRI. https://4rai.com/blog/3-types-of-mri-machines (2016)

  3. Soni, E., Mahajan, R.: MRI image compression using asymmetric wavelet analysis. In: International Conference on Advanced Informatics for Computing Research, pp. 260–270. Springer (2019)

    Google Scholar 

  4. Md Atiqur Rahman Ahad, R.R., Ahmed, M.U.: A study on computer-aided diagnosis of Alzheimer’s disease from the ventricular enlargement using s-MRI data. Int. J. Biomed. Soft Comput. Hum. Sci. 24(2)

    Google Scholar 

  5. Sepehrband, F., Barisano, G., Sheikh-Bahaei, N., Cabeen, R.P., Choupan, J., Law, M., Toga, A.W.: Image processing approaches to enhance perivascular space visibility and quantification using MRI, pp. 609–362. BioRxiv (2019)

    Google Scholar 

  6. Kak, A.C., Slaney, M., Wang, G.: Principles of computerized tomographic imaging. Med. Phys. 29(1), 107–107 (2002)

    Article  MATH  Google Scholar 

  7. Ortiz, S.H.C., Chiu, T., Fox, M.D.: Ultrasound image enhancement: a review. Biomed. Signal Proces. Control 7(5), 419–428 (2012)

    Article  Google Scholar 

  8. Food, U., Administration, D., et al.: Initiative to reduce unnecessary radiation exposure from medical imaging. Center for Devices and Radiological Health (2010)

    Google Scholar 

  9. Stockham, T.G.: Image processing in the context of a visual model. Proc. IEEE 60(7), 828–842 (1972)

    Article  Google Scholar 

  10. Filo, S., Shtangel, O., Salamon, N., Kol, A., Weisinger, B., Shifman, S., Mezer, A.A.: Disentangling molecular alterations from water-content changes in the aging human brain using quantitative MRI. Nat. Commun. 10(1), 1–16 (2019)

    Article  Google Scholar 

  11. Chaudhari, A.S., Fang, Z., Kogan, F., Wood, J., Stevens, K.J., Gibbons, E.K., Lee, J.H., Gold, G.E., Hargreaves, B.A.: Super-resolution musculoskeletal MRI using deep learning. Magn. Reson. Med. 80(5), 2139–2154 (2018)

    Article  Google Scholar 

  12. Ramani, R., Vanitha, N.S., Valarmathy, S.: The pre-processing techniques for breast cancer detection in mammography images. Int. J. Image Graph. Signal Process. 5(5), 47 (2013)

    Article  Google Scholar 

  13. Kushol, R., Raihan, M., Salekin, M.S., Rahman, A., et al.: Contrast enhancement of medical X-ray image using morphological operators with optimal structuring element. arXiv:1905.08545 (2019)

  14. Applying of canny edge detector. https://medpix.nlm.nih.gov/search?allen=true&allt=true&alli=true&query=fracture, May 2020

  15. Helvie, M.A.: Digital mammography imaging: breast tomosynthesis and advanced applications. Radiol. Clin. North Am. 48(5), 917 (2010)

    Article  Google Scholar 

  16. Liu, F., Hernandez-Cabronero, M., Sanchez, V., Marcellin, M.W., Bilgin, A.: The current role of image compression standards in medical imaging. Information 8(4), 131 (2017)

    Article  Google Scholar 

  17. Lyu, Y., Jiang, W., Lin, Y., Voros, L., Zhang, M., Mueller, B., Mychalczak, B., Song, Y.: Motion-blind blur removal for CT images with Wasserstein generative adversarial networks. In: 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–5. IEEE (2018)

    Google Scholar 

  18. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion Deblurring using conditional adversarial networks. arxiv:1711.07064 (2017)

  19. Mishra, D., Chaudhury, S., Sarkar, M., Soin, A.S.: Ultrasound image enhancement using structure oriented adversarial network. IEEE Signal Process. Lett. 25(9), 1349–1353 (2018)

    Article  Google Scholar 

  20. Wang, R., Fang, Z., Gu, J., Guo, Y., Zhou, S., Wang, Y., Chang, C., Yu, J.: High-resolution image reconstruction for portable ultrasound imaging devices. EURASIP J. Adv. Sig. Process. 2019(1), 56 (2019)

    Article  Google Scholar 

  21. Ternifi, R., Kammoun, M., Pouletaut, P., Subramaniam, M., Hawse, J.R., Bensamoun, S.F.: Ultrasound image processing to estimate the structural and functional properties of mouse skeletal muscle. Biomed. Signal Process. Control 56, 101–735 (2020)

    Article  Google Scholar 

  22. Liu, S., Bai, W., Zeng, N., Wang, S.: A fast fractal based compression for MRI images. IEEE Access 7, 62412–62420 (2019)

    Article  Google Scholar 

  23. Prabhu, K., Sridhar, K., Mischi, M., Bharath, H.N.: 3-d warped discrete cosine transform for MRI image compression. Biomed. Signal Process. Control 8(1), 50–58 (2013)

    Article  Google Scholar 

  24. Soni, E., Mahajan, R.: Symmetric wavelet analysis toward MRI image compression. In: Soft Computing: Theories and Applications, , pp. 533–547. Springer (2018)

    Google Scholar 

  25. Dodig, M. Grgic, S., Dodig, S.: Quality of chest X-ray images compressed using JPEG and JPEG. In: EUROCON 2005—The International Conference on Computer as a Tool, vol. 2, pp. 931–934. IEEE (2005)

    Google Scholar 

  26. Sushmit, A.S., Zaman, S.U., Humayun, A.I., Hasan, T.: X-ray image compression using convolutional recurrent neural networks. CoRR, arXiv:1904.12271 (2019)

  27. Kazeminia, S., Karimi, N., Soroushmehr, S.R., Samavi, S., Derksen, H., Najarian, K.: Region of interest extraction for lossless compression of bone X-ray images, In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3061–3064. IEEE (2015)

    Google Scholar 

  28. Hosseini, S.M., Naghsh-Nilchi, A.-R.: Medical ultrasound image compression using contextual vector quantization. Comput. Biol. Med. 42(7), 743–750 (2012)

    Article  Google Scholar 

  29. Shahhoseini, E., Nejad, N.A., Behnam, H., Shahhoseini, A.: A new approach to compression of medical ultrasound images using wavelet transform. In 2010 Third International Conference on Advances in Circuits, Electronics and Microelectronics, pp. 40–44. IEEE (2010)

    Google Scholar 

  30. Perdios, D., Besson, A., Arditi, M., Thiran, J.-P.: A deep learning approach to ultrasound image recovery. In: IEEE International Ultrasonics Symposium (IUS), pp. 1–4. IEEE (2017)

    Google Scholar 

  31. China, D., Tom, F., Nandamuri, S., Kar, A., Srinivasan, M., Mitra, P., Sheet, D.: Ultracompression: framework for high density compression of ultrasound volumes using physics modeling deep neural networks. In: IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 798–801. IEEE (2019)

    Google Scholar 

  32. Bertling J., Rommel, S.: A critical view of 3d printing regarding industrial mass customization versus individual desktop fabrication. In: The Decentralized and Networked Future of Value Creation, pp. 75–105. Springer (2016)

    Google Scholar 

  33. Charles, A., Elkaseer, A., Thijs, L., Hagenmeyer, V., Scholz, S.: Effect of process parameters on the generated surface roughness of down-facing surfaces in selective laser melting. Appl. Sci. 9(6), 1256 (2019)

    Article  Google Scholar 

  34. Elkaseer, A., Salem, M., Hagenmeyer, V., Scholz, S.: Vision system-based inspection and alignment of laminated polymer films for 3d-integration of microsystems. IFAC-PapersOnLine 52(15), 13–18 (2019)

    Article  Google Scholar 

  35. Elkaseer, A., Salama, M., Ali, H., Scholz, S.: Approaches to a practical implementation of industry 4.0. Resource 3, 5 (2018)

    Google Scholar 

  36. Vukicevic, M., Mosadegh, B., Min, J.K., Little, S.H.: Cardiac 3d printing and its future directions. JACC Cardiovas. Imaging 10(2), 171–184 (2017)

    Google Scholar 

  37. Keicher D.: CAD/CAM Approach to Additive Manufacturing. https://www.osti.gov/servlets/purl/1341361. Accessed 1 Sep 2016

  38. Wang, L., Traub, J., Weidert, S., Heining, S.M., Euler, E., Navab, N.: Parallax free long bone X-ray image stitching. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) Medical Image Computing and Computer- Assisted Intervention—MICCAI 2009, , pp. 173–180. Springer, Berlin, Heidelberg (2009). ISBN 978-3-642-04268-3

    Google Scholar 

  39. Navab, N., Heining, S.-M., Traub, J.: Camera augmented mobile c-arm (CAMC): calibration, accuracy study, and clinical applications. IEEE Trans. Med. Imaging 29(7), 1412–1423 (2009)

    Article  Google Scholar 

  40. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.W.: Kinectfusion: Real-time dense surface mapping and tracking. In: ISMAR, vol. 11, pp. 127–136 (2011)

    Google Scholar 

  41. Hajek, J., Unberath, M., Fotouhi, J., Bier, B., Lee, S.C., Osgood, G., Maier, A., Armand, M., Navab, N.: Closing the calibration loop: an inside-out-tracking paradigm for augmented reality in orthopedic surgery. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 299–306. Springer (2018)

    Google Scholar 

  42. Lee, S.C., Fuerst, B., Tateno, K., Johnson, A., Fotouhi, J., Osgood, G., Tombari, F., Navab, N.: Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery. Healthcare Technol. Lett. 4(5), 168–173 (2017)

    Article  Google Scholar 

  43. Ahmed, M., Das Antar, A., Ahad, M.A.R.: An approach to classify human activities in real-time from smartphone sensor data. In: 2019 Joint 8th International Conference on Informatics, Electronics Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision Pattern Recognition (icIVPR), pp. 140–145 (2019)

    Google Scholar 

  44. Ahad, M.A.R., Antar, A.D., Ahmed, M.: IoT sensor-based activity recognition. In: IoT Sensor-based Activity Recognition. Springer (2020)

    Google Scholar 

  45. Ahad, M.A.R., Antar, A.D., Shahid, O.: Vision-based action understanding for assistive healthcare: a short review. In: IEEE CVPR Workshop (2019)

    Google Scholar 

  46. Noman, M.T.B., Ahad, M.A.R.: Mobile-based eye-blink detection performance analysis on android platform (2018)

    Google Scholar 

  47. Székely, A., Talanow, R., Bágyi, P.: Smartphones, tablets and mobile applications for radiology. Eur. J. Radiol. 82(5), 829–836 (2013)

    Article  Google Scholar 

  48. Salem, M., El-Maddah, I., Youssef, K., Mohamed, H.: Internet of things solution for non-invasive vital data acquisition: a step towards smart healthcare system. In: International Conference on Sustainable Design and Manufacturing, pp. 387–397. Springer (2019 )

    Google Scholar 

  49. Wu, H.-Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman, W.: Eulerian video magnification for revealing subtle changes in the world (2012)

    Google Scholar 

  50. Hossain, T., Ahad, M. A. R., Tazin, T., Inoue, S.: Activity recognition by using lorawan sensor. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, pp. 58–61. (2018)

    Google Scholar 

  51. Hossain, T., Doi, Y., Tazin, T., Ahad, M. A. R., Inoue, S.: Study of lorawan technology for activity recognition. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, pp. 1449–1453. (2018)

    Google Scholar 

  52. Chae, S.-H., Moon, D., Lee, D.G., Pan, S.B.: Medical image segmentation for mobile electronic patient charts using numerical modeling of IoT. J. Appl. Math. 2014 (2014)

    Google Scholar 

  53. Kastania, A.N., Moumtzoglou, A.: Quality implications of the medical applications for 4G mobile phones. Int. J. Reliab. Qual. E-Healthcare (IJRQEH) 1(1), 58–67 (2012)

    Article  Google Scholar 

  54. Pianykh, O.S. : Dicom and teleradiology. In: Digital Imaging and Communications in Medicine (DICOM): A Practical Introduction and Survival Guide, pp. 281–317. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-10850-1_13. ISBN 978-3-642-10850-1

  55. Pratavieira, S., Vollet-Filho, J.D., Carbinatto, F.M., Blanco, K., Inada, N.M., Bagnato, V.S., Kurachi, C.: Adapting smartphones for low-cost optical medical imaging. In: Biophotonics South America. International Society for Optics and Photonics, vol. 9531, p. 95313J (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allam Shehata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shehata, A., Salem, M., Ahad, M.A.R. (2021). Image Processing in Health Informatics. In: Ahad, M.A.R., Ahmed, M.U. (eds) Signal Processing Techniques for Computational Health Informatics. Intelligent Systems Reference Library, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-030-54932-9_6

Download citation

Publish with us

Policies and ethics