Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 394))

  • 297 Accesses

Abstract

This chapter describes fuzzy clustering models. Fuzzy clustering models are typical examples of model-based clustering. The purpose of the model-based clustering is to obtain the optimal partition of objects by fitting the model to the observed similarity (or dissimilarity) of objects. The merit of model-based clustering is that we can obtain a mathematically clearer solution as the clustering result, because we know the mathematical features of the model. However, when we observe a large amount of complex data, it is difficult to fit the simple model to the data to obtain a useful result. In order to solve this problem, we have extended the model in the framework of fuzzy clustering models to adjust to the complexity caused from the recent variety of vast amounts of data. This chapter describes how we extend the fuzzy clustering models, along with the mathematical features of the several fuzzy clustering models. In particular, we describe the novel generalized aggregation operator defined on the product space of linear spaces and the generalized aggregation operator based nonlinear fuzzy clustering model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis. Wiley, New York (1958)

    Google Scholar 

  2. Ai-Ping, L., Yan, J., Quan-Yuan, W.: Harmonic triangular norm aggregation operators in multicriteria decision systems. J. Converg. Inf. Technol. 2(1), 83–92 (2007)

    Google Scholar 

  3. Banfield, J.D., Raftery, A.E.: Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803–821 (1993)

    Article  MathSciNet  Google Scholar 

  4. Beliakov, G.: How to build aggregation operators from data. Int. J. Intell. Syst. 18, 903–923 (2003)

    Article  Google Scholar 

  5. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Google Scholar 

  6. Bock, H.H.: Probabilistic models in cluster analysis. Comput. Stat. Data Anal. 23, 5–28 (1996)

    Article  Google Scholar 

  7. Carroll, J.D., Chang, J.J.: Analysis of individual differences in multidimensional scaling via an N-generalization of the Eckart-Young decomposition. Psychometrika 35, 283–319 (1970)

    Article  Google Scholar 

  8. Carroll, J.D., Arabie, P.: INDCLUS: an individual differences generalization of ADCLUS model and the MAPCLUS algorithm. Psychometrika 48, 157–169 (1983)

    Article  Google Scholar 

  9. Clogg, C.C.: Some latent structure models for the analysis of Likert-type data. Soc. Sci. Res. 9, 287–301 (1979)

    Article  Google Scholar 

  10. Clogg, C.C.: Latent structure models of mobility. Am. J. Sociol. 86(4), 836–868 (1981)

    Article  Google Scholar 

  11. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling. Chapman & Hall (2001)

    Google Scholar 

  12. Friedman, H.P., Rubin, J.: On some invariant criteria for grouping data. J. Am. Stat. Assoc. 62, 1159–1178 (1967)

    Article  MathSciNet  Google Scholar 

  13. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publications (2000)

    Google Scholar 

  14. Lazarsfeld, P.F.: The Interpretation and Mathematical Foundation of Latent Structure Analysis, Measurement and Prediction, pp. 413–472. Princeton University Press (1950)

    Google Scholar 

  15. Lazarsfeld, P.F., Henry, N.W.: Latent Structure Analysis. Houghton-Mifflin, Boston (1968)

    Google Scholar 

  16. Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. U.S.A. 28, 535–537 (1942)

    Google Scholar 

  17. Merigo, J.M., Casanovas, M.: Fuzzy generalized hybrid aggregation operators and its application in fuzzy decision making. Int. J. Fuzzy Syst. 12(1), 15–24 (2010)

    Google Scholar 

  18. Ruspini, E.H.: A new approach to clustering. Inf. Control 15, 22–32 (1969)

    Article  Google Scholar 

  19. Sato, M., Sato, Y.: An additive fuzzy clustering model. Jpn. J. Fuzzy Theory Syst. 6, 185–204 (1994)

    MATH  Google Scholar 

  20. Sato, M., Sato, Y.: On a general fuzzy additive clustering model. Int. J. Intell. Autom. Soft Comput. 1(4), 439–448 (1995)

    Article  MathSciNet  Google Scholar 

  21. Sato-Ilic, M., Ito, S.: Kernel fuzzy clustering model. In: 24th Fuzzy System Symposium, pp. 153–154 (2008) (in Japanese)

    Google Scholar 

  22. Sato-Ilic, M., Ito, S., Takahashi, S.: Nonlinear kernel-based fuzzy clustering model. In: Viattchenin, D.A. (ed.) Developments in Fuzzy Clustering, pp. 56–73. VEVER, Minsk (Belarus) (2009)

    Google Scholar 

  23. Sato-Ilic, M.: Generalized aggregation operator based nonlinear fuzzy clustering model. In: Intelligent Engineering Systems Through Artificial Neural Networks, New York, USA, vol. 20, pp. 493–500 (2010)

    Google Scholar 

  24. Schonemann, P.H.: An algebraic solution for class of subjective metrics models. Psychometrika 37, 441–451 (1972)

    Article  MathSciNet  Google Scholar 

  25. Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Dover Publications (2005)

    Google Scholar 

  26. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press (2004)

    Google Scholar 

  27. Shepard, R.N., Arabie, P.: Additive clustering: representation of similarities as combinations of discrete overlapping properties. Psychol. Rev. 86(2), 87–123 (1979)

    Article  Google Scholar 

  28. Scott, A.J., Symons, M.J.: Clustering methods based on likelihood ratio criteria. Biometrics 27, 387–397 (1971)

    Article  Google Scholar 

  29. Takane, Y., Kiers, H.A.L.: Latent class DEDICOM. J. Classif. 225–247 (1997)

    Google Scholar 

  30. Tardiff, R.M.: Topologies for probabilistic metric spaces. Pac. J. Math. 65(1), 233–251 (1976)

    Article  MathSciNet  Google Scholar 

  31. Tardiff, R.M.: On a functional inequality arising in the construction of the product of several metric spaces. Aequationes Math. 20, 51–58 (1980)

    Article  MathSciNet  Google Scholar 

  32. Zadeh, L.A.: Fuzzy Sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Sato-Ilic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sato-Ilic, M. (2021). Fuzzy Clustering Models and Their Related Concepts. In: Lesot, MJ., Marsala, C. (eds) Fuzzy Approaches for Soft Computing and Approximate Reasoning: Theories and Applications. Studies in Fuzziness and Soft Computing, vol 394. Springer, Cham. https://doi.org/10.1007/978-3-030-54341-9_11

Download citation

Publish with us

Policies and ethics