Skip to main content

Sickle Cell Nephropathy in Children

  • Reference work entry
  • First Online:
Pediatric Nephrology

Abstract

Sickle cell disease (SCD) is one of the most common genetic disorders in the United States, affecting over 100,000 Americans and millions of people worldwide, primarily of African or Mediterranean descent. SCD is a group of hemoglobinopathies inherited in an autosomal recessive fashion. Nearly all organ systems are affected by SCD, including the kidneys. The renal manifestations of SCD are known as sickle cell nephropathy (SCN). Multiple pathogenic processes contribute to development of SCN, notably renal ischemia and hemolysis, which result in both glomerular and tubulointerstitial disease. Clinically significant complications of SCD include hyperfiltration, albuminuria, hyposthenuria, hematuria, hypertension, acute kidney injury (AKI), and chronic kidney disease (CKD). Despite these complications, occurrence of end-stage kidney disease (ESKD) is relatively uncommon, particularly in children. Of those who progress to ESKD, both dialysis and transplantation are viable treatments. While transplantation in SCN is associated with increased complications compared to other causes of ESKD, it is preferred over dialysis due to more favorable outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weatherall DJ. The inherited diseases of hemoglobin are an emerging global health burden. Blood. 2010;115(22):4331–6. https://doi.org/10.1182/blood-2010-01-251348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ware RE, Rees RC, Sarnaik SA, Iyer RV, Alvarez OA, Casella JF, Shulkin BL, Shalaby-Rana E, Strife CF, Miller JH, Lane PA, Wang WC, Miller ST. Renal function in infants with sickle cell anemia: baseline data from the BABY HUG trial. J Pediatr. 2010;156(1):66–70.e61. https://doi.org/10.1016/j.jpeds.2009.06.060.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Scheinman JI. Sickle cell disease and the kidney. Nat Clin Pract Nephrol. 2009;5(2):78–88. https://doi.org/10.1038/ncpneph1008.

    Article  PubMed  Google Scholar 

  4. Nath KA, Hebbel RP. Sickle cell disease: renal manifestations and mechanisms. Nat Rev Nephrol. 2015;11(3):161–71. https://doi.org/10.1038/nrneph.2015.8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Heimlich JB, Speed JS, O’Connor PM, Pollock JS, Townes TM, Meiler SE, Kutlar A, Pollock DM. Endothelin-1 contributes to the progression of renal injury in sickle cell disease via reactive oxygen species. Br J Pharmacol. 2016;173(2):386–95. https://doi.org/10.1111/bph.13380.

    Article  CAS  PubMed  Google Scholar 

  6. Maigne G, Ferlicot S, Galacteros F, Belenfant X, Ulinski T, Niaudet P, Ronco P, Godeau B, Durrbach A, Sahali S, Lang P, Lambotte O, Audard V. Glomerular lesions in patients with sickle cell disease. Medicine. 2010;89(1):18–27. https://doi.org/10.1097/MD.0b013e3181ca59b6.

    Article  PubMed  Google Scholar 

  7. Zahr RS, Yee ME, Weaver J, Twombley K, Matar RB, Aviles D, Sreedharan R, Rheault MN, Malatesta-Muncher R, Stone H, Srivastava T, Kapur G, Baddi P, Volovelsky O, Pelletier J, Gbadegesin R, Seeherunvong W, Patel HP, Greenbaum LA. Kidney biopsy findings in children with sickle cell disease: a Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol. 2019;34(8):1435–45. https://doi.org/10.1007/s00467-019-04237-3.

    Article  PubMed  Google Scholar 

  8. Hebbel RP. Ischemia-reperfusion injury in sickle cell anemia: relationship to acute chest syndrome, endothelial dysfunction, arterial vasculopathy, and inflammatory pain. Hematol Oncol Clin North Am. 2014;28(2):181–98. https://doi.org/10.1016/j.hoc.2013.11.005.

    Article  PubMed  Google Scholar 

  9. Alvarez O, Miller ST, Wang WC, Luo Z, McCarville MB, Schwartz GJ, Thompson B, Howard T, Iyer RV, Rana SR, Rogers ZR, Sarnaik SA, Thornburg CD, Ware RE. Effect of hydroxyurea treatment on renal function parameters: results from the multi-center placebo-controlled BABY HUG clinical trial for infants with sickle cell anemia. Pediatr Blood Cancer. 2012;59(4):668–74. https://doi.org/10.1002/pbc.24100.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Maurel S, Stankovic Stojanovic K, Avellino V, Girshovich A, Letavernier E, Grateau G, Baud L, Girot R, Lionnet F, Haymann JP. Prevalence and correlates of metabolic acidosis among patients with homozygous sickle cell disease. Clin J Am Soc Nephrol. 2014;9(4):648–53. https://doi.org/10.2215/cjn.09790913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Drawz P, Ayyappan S, Nouraie M, Saraf S, Gordeuk V, Hostetter T, Gladwin MT, Little J. Kidney disease among patients with sickle cell disease, hemoglobin SS and SC. Clin J Am Soc Nephrol. 2016;11(2):207–15. https://doi.org/10.2215/CJN.03940415.

    Article  CAS  PubMed  Google Scholar 

  12. Vaamonde CA. Renal papillary necrosis in sickle cell hemoglobinopathies. Semin Nephrol. 1984;4(1):48–64.

    Google Scholar 

  13. Yawn BP, Buchanan GR, Afenyi-Annan AN, Ballas SK, Hassell KL, James AH, Jordan L, Lanzkron SM, Lottenberg R, Savage WJ, Tanabe PJ, Ware RE, Murad MH, Goldsmith JC, Ortiz E, Fulwood R, Horton A, John-Sowah J. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA. 2014;312(10):1033–48. https://doi.org/10.1001/jama.2014.10517.

    Article  CAS  PubMed  Google Scholar 

  14. Aygun B, Mortier NA, Smeltzer MP, Shulkin BL, Hankins JS, Ware RE. Hydroxyurea treatment decreases glomerular hyperfiltration in children with sickle cell anemia. Am J Hematol. 2013;88(2):116–9. https://doi.org/10.1002/ajh.23365.

    Article  CAS  PubMed  Google Scholar 

  15. Derebail VK, Ciccone EJ, Zhou Q, Kilgore RR, Cai J, Ataga KI. Progressive decline in estimated GFR in patients with sickle cell disease: an observational cohort study. Am J Kidney Dis. 2019;74(1):47–55. https://doi.org/10.1053/j.ajkd.2018.12.027.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lebensburger JD, Aban I, Pernell B, Kasztan M, Feig DI, Hilliard LM, Askenazi DJ. Hyperfiltration during early childhood precedes albuminuria in pediatric sickle cell nephropathy. Am J Hematol. 2019;94(4):417–23. https://doi.org/10.1002/ajh.25390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ocheke IE, Mohamed S, Okpe ES, Bode-Thomas F, McCullouch MI. Microalbuminuria risks and glomerular filtration in children with sickle cell anaemia in Nigeria. Ital J Pediatr. 2019;45(1):143. https://doi.org/10.1186/s13052-019-0720-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McPherson Yee M, Jabbar SF, Osunkwo I, Clement L, Lane PA, Eckman JR, Guasch A. Chronic kidney disease and albuminuria in children with sickle cell disease. Clin J Am Soc Nephrol. 2011;6(11):2628–33. https://doi.org/10.2215/cjn.01600211.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shatat IF, Qanungo S, Hudson S, Laken MA, Hailpern SM. Changes in urine microalbumin-to-creatinine ratio in children with sickle cell disease over time. Front Pediatr. 2016;4:106. https://doi.org/10.3389/fped.2016.00106.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Niss O, Lane A, Asnani MR, Yee ME, Raj A, Creary S, Fitzhugh C, Bodas P, Saraf SL, Sarnaik S, Devarajan P, Malik P. Progression of albuminuria in patients with sickle cell anemia: a multicenter, longitudinal study. Blood Adv. 2020;4(7):1501–11. https://doi.org/10.1182/bloodadvances.2019001378.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guasch A, Navarrete J, Nass K, Zayas CF. Glomerular involvement in adults with sickle cell hemoglobinopathies: prevalence and clinical correlates of progressive renal failure. J Am Soc Nephrol. 2006;17(8):2228–35. https://doi.org/10.1681/asn.2002010084.

    Article  CAS  PubMed  Google Scholar 

  22. Wigfall DR, Ware RE, Burchinal MR, Kinney TR, Foreman JW. Prevalence and clinical correlates of glomerulopathy in children with sickle cell disease. J Pediatr. 2000;136(6):749–53.

    CAS  PubMed  Google Scholar 

  23. Day TG, Drasar ER, Fulford T, Sharpe CC, Thein SL. Association between hemolysis and albuminuria in adults with sickle cell anemia. Haematologica. 2012;97(2):201–5. https://doi.org/10.3324/haematol.2011.050336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Asnani MR, Fraser RA, Reid ME. Higher rates of hemolysis are not associated with albuminuria in Jamaicans with sickle cell disease. PLoS One. 2011;6(4):e18863. https://doi.org/10.1371/journal.pone.0018863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Laurin LP, Nachman PH, Desai PC, Ataga KI, Derebail VK. Hydroxyurea is associated with lower prevalence of albuminuria in adults with sickle cell disease. Nephrol Dial Transplant. 2014;29(6):1211–8. https://doi.org/10.1093/ndt/gft295.

    Article  CAS  PubMed  Google Scholar 

  26. Zahr RS, Hankins JS, Kang G, Li C, Wang WC, Lebensburger J, Estepp JH. Hydroxyurea prevents onset and progression of albuminuria in children with sickle cell anemia. Am J Hematol. 2019;94(1):E27–9. https://doi.org/10.1002/ajh.25329.

    Article  CAS  PubMed  Google Scholar 

  27. Pikilidou M, Yavropoulou M, Antoniou M, Papakonstantinou E, Pantelidou D, Chalkia P, Nilsson P, Yovos J, Zebekakis P. Arterial stiffness and peripheral and central blood pressure in patients with sickle cell disease. J Clin Hypertens. 2015;17(9):726–31. https://doi.org/10.1111/jch.12572.

    Article  Google Scholar 

  28. Wolf RB, Saville BR, Roberts DO, Fissell RB, Kassim AA, Airewele G, DeBaun MR. Factors associated with growth and blood pressure patterns in children with sickle cell anemia: Silent Cerebral Infarct Multi-Center Clinical Trial cohort. Am J Hematol. 2015;90(1):2–7. https://doi.org/10.1002/ajh.23854.

    Article  PubMed  Google Scholar 

  29. Bodas P, Huang A, O’Riordan MA, Sedor JR, Dell KM. The prevalence of hypertension and abnormal kidney function in children with sickle cell disease – a cross sectional review. BMC Nephrol. 2013;14:237. https://doi.org/10.1186/1471-2369-14-237.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shatat IF, Jakson SM, Blue AE, Johnson MA, Orak JK, Kalpatthi R. Masked hypertension is prevalent in children with sickle cell disease: a Midwest Pediatric Nephrology Consortium study. Pediatr Nephrol. 2013;28(1):115–20. https://doi.org/10.1007/s00467-012-2275-9.

    Article  PubMed  Google Scholar 

  31. DeBaun MR, Sarnaik SA, Rodeghier MJ, Minniti CP, Howard TH, Iyer RV, Inusa B, Telfer PT, Kirby-Allen M, Quinn CT, Bernaudin F, Airewele G, Woods GM, Panepinto JA, Fuh B, Kwiatkowski JK, King AA, Rhodes MM, Thompson AA, Heiny ME, Redding-Lallinger RC, Kirkham FJ, Sabio H, Gonzalez CE, Saccente SL, Kalinyak KA, Strouse JJ, Fixler JM, Gordon MO, Miller JP, Noetzel MJ, Ichord RN, Casella JF. Associated risk factors for silent cerebral infarcts in sickle cell anemia: low baseline hemoglobin, sex, and relative high systolic blood pressure. Blood. 2012;119(16):3684–90. https://doi.org/10.1182/blood-2011-05-349621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson MC, Johnikin MJ, Euteneuer JC, DeBaun MR, Hildebolt C. Coronary artery dilation and left ventricular hypertrophy do not predict morbidity in children with sickle cell disease. Pediatr Blood Cancer. 2015;62(1):115–9. https://doi.org/10.1002/pbc.25239.

    Article  PubMed  Google Scholar 

  33. Field JJ, Austin PF, An P, Yan Y, DeBaun MR. Enuresis is a common and persistent problem among children and young adults with sickle cell anemia. Urology. 2008;72(1):81–4. https://doi.org/10.1016/j.urology.2008.02.006.

    Article  PubMed  Google Scholar 

  34. Figueroa TE, Benaim E, Griggs ST, Hvizdala EV. Enuresis in sickle cell disease. J Urol. 1995;153(6):1987–9.

    Article  CAS  Google Scholar 

  35. Pham PT, Pham PC, Wilkinson AH, Lew SQ. Renal abnormalities in sickle cell disease. Kidney Int. 2000;57(1):1–8. https://doi.org/10.1046/j.1523-1755.2000.00806.x.

    Article  CAS  PubMed  Google Scholar 

  36. Lang EK, Macchia RJ, Thomas R, Davis R, Ruiz-Deya G, Watson RA, Richter F, Gayle B, Sabel AL. Multiphasic helical CT diagnosis of early medullary and papillary necrosis. J Endourol. 2004;18(1):49–56. https://doi.org/10.1089/089277904322836677.

    Article  PubMed  Google Scholar 

  37. Elliott A, Bruner E. Renal medullary carcinoma. Arch Pathol Lab Med. 2019;143(12):1556–61. https://doi.org/10.5858/arpa.2017-0492-RS.

    Article  CAS  PubMed  Google Scholar 

  38. Lebensburger JD, Palabindela P, Howard TH, Feig DI, Aban I, Askenazi DJ. Prevalence of acute kidney injury during pediatric admissions for acute chest syndrome. Pediatr Nephrol. 2016;31(8):1363–8. https://doi.org/10.1007/s00467-016-3370-0.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Baddam S, Aban I, Hilliard L, Howard T, Askenazi D, Lebensburger JD. Acute kidney injury during a pediatric sickle cell vaso-occlusive pain crisis. Pediatr Nephrol. 2017;32(8):1451–6. https://doi.org/10.1007/s00467-017-3623-6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. McCormick M, Richardson T, Warady BA, Novelli EM, Kalpatthi R. Acute kidney injury in paediatric patients with sickle cell disease is associated with increased morbidity and resource utilization. Br J Haematol. 2020;189(3):559–65. https://doi.org/10.1111/bjh.16384.

    Article  PubMed  Google Scholar 

  41. Yeruva SL, Paul Y, Oneal P, Nouraie M. Renal failure in sickle cell disease: prevalence, predictors of disease, mortality and effect on length of hospital stay. Hemoglobin. 2016;40(5):295–9. https://doi.org/10.1080/03630269.2016.1224766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arlet JB, Ribeil JA, Chatellier G, Eladari D, De Seigneux S, Souberbielle JC, Friedlander G, de Montalembert M, Pouchot J, Prie D, Courbebaisse M. Determination of the best method to estimate glomerular filtration rate from serum creatinine in adult patients with sickle cell disease: a prospective observational cohort study. BMC Nephrol. 2012;13:83. https://doi.org/10.1186/1471-2369-13-83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Asnani MR, Lynch O, Reid ME. Determining glomerular filtration rate in homozygous sickle cell disease: utility of serum creatinine based estimating equations. PLoS One. 2013;8(7):e69922. https://doi.org/10.1371/journal.pone.0069922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Patel R, Kang S, Valeshabad AK, Shah BN, Han J, Gowhari M, Molokie RE, Xie K, Lash JP, Gordeuk VR, Saraf SL. Kidney ultrasound findings according to kidney function in sickle cell anemia. Am J Hematol. 2019;94(11):E288–91. https://doi.org/10.1002/ajh.25602.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Donnola SB, Piccone CM, Lu L, Batesole J, Little J, Dell KM, Flask CA. Diffusion tensor imaging MRI of sickle cell kidney disease: initial results and comparison with iron deposition. NMR Biomed. 2018;31(3). https://doi.org/10.1002/nbm.3883.

  46. Boyle SM, Jacobs B, Sayani FA, Hoffman B. Management of the dialysis patient with sickle cell disease. Semin Dial. 2016;29(1):62–70. https://doi.org/10.1111/sdi.12403.

    Article  PubMed  Google Scholar 

  47. Zumrutdal A. Response of patients with sickle cell anaemia and end-stage renal disease to erythropoietin treatment. NDT Plus. 2010;3(3):328–30. https://doi.org/10.1093/ndtplus/sfq011.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ojo AO, Govaerts TC, Schmouder RL, Leichtman AB, Leavey SF, Wolfe RA, Held PJ, Port FK, Agodoa LY. Renal transplantation in end-stage sickle cell nephropathy. Transplantation. 1999;67(2):291–5.

    Article  CAS  Google Scholar 

  49. Gerardin C, Moktefi A, Couchoud C, Duquesne A, Ouali N, Gataut P, Karras A, Anglicheau D, Lefaucheur C, Figueres L, Albano L, Lionet A, Novion M, Ziliotis MJ, Louis M, Del Bello A, Matignon M, Dahan K, Habibi A, Galacteros F, Bartolucci P, Grimbert P, Audard V. Survival and specific outcome of sickle cell disease patients after renal transplantation. Br J Haematol. 2019;187(5):676–80. https://doi.org/10.1111/bjh.16113.

    Article  PubMed  Google Scholar 

  50. Warady BA, Sullivan EK. Renal transplantation in children with sickle cell disease: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). Pediatr Transplant. 1998;2(2):130–3.

    CAS  PubMed  Google Scholar 

  51. Sharpe CC, Thein SL. Sickle cell nephropathy – a practical approach. Br J Haematol. 2011;155(3):287–97. https://doi.org/10.1111/j.1365-2141.2011.08853.x.

    Article  CAS  PubMed  Google Scholar 

  52. Saran R, Li Y, Robinson B, Ayanian J, Balkrishnan R, Bragg-Gresham J, Chen JT, Cope E, Gipson D, He K, Herman W, Heung M, Hirth RA, Jacobsen SS, Kalantar-Zadeh K, Kovesdy CP, Leichtman AB, Lu Y, Molnar MZ, Morgenstern H, Nallamothu B, O'Hare AM, Pisoni R, Plattner B, Port FK, Rao P, Rhee CM, Schaubel DE, Selewski DT, Shahinian V, Sim JJ, Song P, Streja E, Kurella Tamura M, Tentori F, Eggers PW, Agodoa LY, Abbott KC. US Renal Data System 2014 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2015;66(1 Suppl 1):Svii, S1–305. https://doi.org/10.1053/j.ajkd.2015.05.001.

  53. Powars DR, Chan LS, Hiti A, Ramicone E, Johnson C. Outcome of sickle cell anemia: a 4-decade observational study of 1056 patients. Medicine. 2005;84(6):363–76. https://doi.org/10.1097/01.md.0000189089.45003.52.

    Article  PubMed  Google Scholar 

  54. Lebel A, Teoh CW, Zappitelli M. Long-term complications of acute kidney injury in children. Curr Opin Pediatr. 2020;32(3):367–75. https://doi.org/10.1097/MOP.0000000000000906.

    Article  PubMed  Google Scholar 

  55. Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis. 2012;59(4):523–30. https://doi.org/10.1053/j.ajkd.2011.10.048.

    Article  PubMed  Google Scholar 

  56. Saraf SL, Zhang X, Kanias T, Lash JP, Molokie RE, Oza B, Lai C, Rowe JH, Gowhari M, Hassan J, Desimone J, Machado RF, Gladwin MT, Little JA, Gordeuk VR. Haemoglobinuria is associated with chronic kidney disease and its progression in patients with sickle cell anaemia. Br J Haematol. 2014;164(5):729–39. https://doi.org/10.1111/bjh.12690.

    Article  CAS  PubMed  Google Scholar 

  57. Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330(23):1639–44. https://doi.org/10.1056/NEJM199406093302303.

    Article  CAS  PubMed  Google Scholar 

  58. Powars DR, Elliott-Mills DD, Chan L, Niland J, Hiti AL, Opas LM, Johnson C. Chronic renal failure in sickle cell disease: risk factors, clinical course, and mortality. Ann Intern Med. 1991;115(8):614–20.

    Article  CAS  Google Scholar 

  59. Umeukeje EM, Young BA. Genetics and ESKD disparities in African Americans. Am J Kidney Dis. 2019;74(6):811–21. https://doi.org/10.1053/j.ajkd.2019.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kormann R, Jannot AS, Narjoz C, Ribeil JA, Manceau S, Delville M, Joste V, Prie D, Pouchot J, Thervet E, Courbebaisse M, Arlet JB. Roles of APOL1 G1 and G2 variants in sickle cell disease patients: kidney is the main target. Br J Haematol. 2017;179(2):323–35. https://doi.org/10.1111/bjh.14842.

    Article  CAS  PubMed  Google Scholar 

  61. Zahr RS, Rampersaud E, Kang G, Weiss MJ, Wu G, Davis RL, Hankins JS, Estepp JH, Lebensburger J. Children with sickle cell anemia and APOL1 genetic variants develop albuminuria early in life. Haematologica. 2019;104(9):e385–7. https://doi.org/10.3324/haematol.2018.212779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nielsen L, Canoui-Poitrine F, Jais JP, Dahmane D, Bartolucci P, Bentaarit B, Gellen-Dautremer J, Remy P, Kofman T, Matignon M, Suberbielle C, Jacquelinet C, Wagner-Ballon O, Sahali D, Lang P, Damy T, Galacteros F, Grimbert P, Habibi A, Audard V. Morbidity and mortality of sickle cell disease patients starting intermittent haemodialysis: a comparative cohort study with non-sickle dialysis patients. Br J Haematol. 2016;174(1):148–52. https://doi.org/10.1111/bjh.14040.

    Article  CAS  PubMed  Google Scholar 

  63. Okafor UH, Aneke E. Outcome and challenges of kidney transplant in patients with sickle cell disease. J Transplant. 2013;2013:614610. https://doi.org/10.1155/2013/614610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Willis JC, Awogbade M, Howard J, Breen C, Abbas A, Harber M, Shendi AM, Andrews PA, Galliford J, Thuraisingham R, Gage A, Shah S, Sharpe CC. Outcomes following kidney transplantation in patients with sickle cell disease: the impact of automated exchange blood transfusion. PLoS One. 2020;15(8):e0236998. https://doi.org/10.1371/journal.pone.0236998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Olaniran KO, Allegretti AS, Zhao SH, Achebe MM, Eneanya ND, Thadhani RI, Nigwekar SU, Kalim S. Kidney function decline among black patients with sickle cell trait and sickle cell disease: an observational cohort study. J Am Soc Nephrol. 2020;31(2):393–404. https://doi.org/10.1681/ASN.2019050502.

    Article  CAS  PubMed  Google Scholar 

  66. Naik RP, Derebail VK, Grams ME, Franceschini N, Auer PL, Peloso GM, Young BA, Lettre G, Peralta CA, Katz R, Hyacinth HI, Quarells RC, Grove ML, Bick AG, Fontanillas P, Rich SS, Smith JD, Boerwinkle E, Rosamond WD, Ito K, Lanzkron S, Coresh J, Correa A, Sarto GE, Key NS, Jacobs DR, Kathiresan S, Bibbins-Domingo K, Kshirsagar AV, Wilson JG, Reiner AP. Association of sickle cell trait with chronic kidney disease and albuminuria in African Americans. JAMA. 2014; https://doi.org/10.1001/jama.2014.15063.

  67. Naik RP, Irvin MR, Judd S, Gutierrez OM, Zakai NA, Derebail VK, Peralta C, Lewis MR, Zhi D, Arnett D, McClellan W, Wilson JG, Reiner AP, Kopp JB, Winkler CA, Cushman M. Sickle cell trait and the risk of ESRD in blacks. J Am Soc Nephrol. 2017;28(7):2180–7. https://doi.org/10.1681/ASN.2016101086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine MacRae Dell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Graf, T., Piccone, C., Dell, K.M. (2022). Sickle Cell Nephropathy in Children. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics