Skip to main content

Epidemiology and Management of Chronic Kidney Disease in Children

  • Reference work entry
  • First Online:
Pediatric Nephrology
  • 3730 Accesses

Abstract

The global burden of chronic kidney disease remains high, and the cost of caring for patients with CKD is substantial, especially if end-stage kidney disease occurs. The incidence and prevalence of chronic kidney disease is understudied in children, and most of our data and current understanding are derived from large national registries of children receiving kidney replacement therapy. We have made significant progress in identifying risk factors that lead to the progression of chronic kidney disease in children, which has led to improved outcomes for children who require kidney replacement therapy. However, not all children have access to dialysis and kidney transplantation when end-stage kidney disease occurs depending on where they live in the world. Understanding the epidemiology of chronic kidney disease in children remains critical for the early recognition and prevention of the progression of chronic kidney disease and achieving equity in outcomes globally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,099.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709–33.

    Google Scholar 

  2. Mitsnefes MM, Laskin BL, Dahhou M, Zhang X, Foster BJ. Mortality risk among children initially treated with dialysis for end-stage kidney disease, 1990-2010. JAMA. 2013;309(18):1921–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Warady BA, Chadha V. Chronic kidney disease in children: the global perspective. Pediatr Nephrol. 2007;22(12):1999–2009.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chesnaye NC, Schaefer F, Groothoff JW, et al. Mortality risk in European children with end-stage renal disease on dialysis. Kidney Int. 2016;89(6):1355–62.

    Article  PubMed  Google Scholar 

  5. Harambat J, van Stralen KJ, Kim JJ, Tizard EJ. Epidemiology of chronic kidney disease in children. Pediatr Nephrol (Berlin, Germany). 2012;27(3):363–73.

    Article  Google Scholar 

  6. Ahn SY, Moxey-Mims M. CKD in children: the importance of a National Epidemiologic Study. Am J Kidney Dis. 2018;72(5):628–30.

    Article  PubMed  Google Scholar 

  7. Hanson CS, Craig JC, Logeman C, et al. Establishing core outcome domains in pediatric kidney disease: report of the standardized outcomes in nephrology-children and adolescents (SONG-KIDS) consensus workshops. Kidney Int. 2020;98(3):553–65.

    Article  PubMed  Google Scholar 

  8. Kidney disease : Improving global outcomes (KDIGO) CKD work group. KDIGO. In: Levin A, Stevens PE, Bilous RW, Coresh J, De Francisco ALM, De Jong PE, Griffith KE, Hemmelgarn BR, Iseki K, Lamb EJ, Levey AS, Riella MC, Shlipak MG, Wang H, White CT, Winearls CG, editors. Clinical practice guideline for the evaluation and management of chronic kidney disease; 2012.

    Google Scholar 

  9. Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin N Am. 1987;34(3):571–90.

    Article  CAS  Google Scholar 

  10. Schwartz GJ, Muñoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Staples A, LeBlond R, Watkins S, Wong C, Brandt J. Validation of the revised Schwartz estimating equation in a predominantly non-CKD population. Pediatr Nephrol. 2010;25(11):2321–6.

    Article  PubMed  Google Scholar 

  12. Alkandari O, Hebert D, Langlois V, Robinson LA, Parekh RS. Validation of serum creatinine-based formulae in pediatric renal transplant recipients. Pediatr Res. 2017;82(6):1000–6.

    Article  CAS  PubMed  Google Scholar 

  13. Pottel H, Dubourg L, Goffin K, Delanaye P. Alternatives for the bedside Schwartz equation to estimate glomerular filtration rate in children. Adv Chronic Kidney Dis. 2018;25(1):57–66.

    Article  PubMed  Google Scholar 

  14. Pottel H, Mottaghy FM, Zaman Z, Martens F. On the relationship between glomerular filtration rate and serum creatinine in children. Pediatr Nephrol. 2010;25(5):927–34.

    Article  PubMed  Google Scholar 

  15. Ng DK, Schwartz GJ, Schneider MF, Furth SL, Warady BA. Combination of pediatric and adult formulas yield valid glomerular filtration rate estimates in young adults with a history of pediatric chronic kidney disease. Kidney Int. 2018;94(1):170–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miliku K, Bakker H, Dorresteijn EM, et al. Childhood estimates of glomerular filtration rate based on creatinine and cystatin C: importance of body composition. Am J Nephrol. 2017;45(4):320–6.

    Article  CAS  PubMed  Google Scholar 

  18. Schwartz GJ, Schneider MF, Maier PS, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82(4):445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lieske JC, Bondar O, Miller WG, et al. A reference system for urinary albumin: current status. Clin Chem Lab Med. 2013;51(5):981–9.

    Article  CAS  PubMed  Google Scholar 

  20. Chen TK, Knicely DH, Grams ME. Chronic kidney disease diagnosis and management: a review. JAMA. 2019;322(13):1294–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fathallah-Shaykh SA, Flynn JT, Pierce CB, et al. Progression of pediatric CKD of nonglomerular origin in the CKiD cohort. Clin J Am Soc Nephrol. 2015;10(4):571–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fuhrman DY, Schneider MF, Dell KM, et al. Albuminuria, proteinuria, and renal disease progression in children with CKD. Clin J Am Soc Nephrol. 2017;12(6):912–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van den Belt SM, Heerspink HJL, Gracchi V, de Zeeuw D, Wühl E, Schaefer F. Early proteinuria lowering by angiotensin-converting enzyme inhibition predicts renal survival in children with CKD. J Am Soc Nephrol. 2018;29(8):2225.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Schneider MF, Muñoz A, Ku E, Warady BA, Furth SL, Schwartz GJ. Estimation of albumin-creatinine ratio from protein-creatinine ratio in urine of children and adolescents with CKD. Am J Kidney Dis. 2020;

    Google Scholar 

  25. Hogg RJ. Screening for CKD in children: a global controversy. Clin J Am Soc Nephrol. 2009;4(2):509–15.

    Article  CAS  PubMed  Google Scholar 

  26. Sekhar DL, Wang L, Hollenbeak CS, Widome MD, Paul IM. A cost-effectiveness analysis of screening urine dipsticks in well-child care. Pediatrics. 2010;125(4):660–3.

    Article  PubMed  Google Scholar 

  27. Areses Trapote R, Sanahuja Ibáñez MJ, Navarro M. Epidemiology of chronic kidney disease in Spanish pediatric population. REPIR II Project. Nefrologia. 2010;30(5):508–17.

    CAS  PubMed  Google Scholar 

  28. Kim JJ, Booth CJ, Waller S, Rasmussen P, Reid CJ, Sinha MD. The demographic characteristics of children with chronic kidney disease stages 3-5 in south East England over a 5-year period. Arch Dis Child. 2013;98(3):189–94.

    Article  PubMed  Google Scholar 

  29. Saydah SH, Xie H, Imperatore G, Burrows NR, Pavkov ME. Trends in albuminuria and GFR among adolescents in the United States, 1988-2014. Am J Kidney Dis. 2018;72(5):644–52.

    Article  CAS  PubMed  Google Scholar 

  30. Song P, Wang M, Chang X, Wang J, Wei W, An L. Prevalence and associated factors of impaired renal function in Chinese children: the China health and nutrition survey. Nephrology (Carlton). 2019;24(2):195–201.

    Article  CAS  Google Scholar 

  31. Soylemezoglu O, Duzova A, Yalçinkaya F, Arinsoy T, Süleymanlar G. Chronic renal disease in children aged 5–18 years: a population-based survey in Turkey, the CREDIT-C study. Nephrol Dial Transplant. 2012;27(Suppl 3):iii146–51.

    Article  PubMed  Google Scholar 

  32. Calderon-Margalit R, Golan E, Twig G, et al. History of childhood kidney disease and risk of adult end-stage renal disease. N Engl J Med. 2018;378(5):428–38.

    Article  PubMed  Google Scholar 

  33. Vivante A, Afek A, Frenkel-Nir Y, et al. Persistent asymptomatic isolated microscopic Hematuria in Israeli adolescents and young adults and risk for end-stage renal disease. JAMA. 2011;306(7):729–36.

    Article  CAS  PubMed  Google Scholar 

  34. Harambat J, Ekulu PM. Inequalities in access to pediatric ESRD care: a global health challenge. Pediatr Nephrol. 2016;31(3):353–8.

    Article  PubMed  Google Scholar 

  35. Chesnaye NC, Schaefer F, Groothoff JW, et al. Disparities in treatment rates of paediatric end-stage renal disease across Europe: insights from the ESPN/ERA-EDTA registry. Nephrol Dial Transplant. 2015;30(8):1377–85.

    Article  PubMed  Google Scholar 

  36. Orr NI, McDonald SP, McTaggart S, Henning P, Craig JC. Frequency, etiology and treatment of childhood end-stage kidney disease in Australia and New Zealand. Pediatr Nephrol. 2009;24(9):1719–26.

    Article  PubMed  Google Scholar 

  37. Hattori M. Current trend of pediatric renal replacement therapy in Japan.

    Google Scholar 

  38. United States Renal Data System. USRDS annual data report: epidemiology of kidney disease in the United States: National Institutes of Health NIoDaDaK; 2018.

    Google Scholar 

  39. Plumb L, Wong E, Casula A, et al. Chapter 4 demography of the UK paediatric renal replacement therapy population in 2016. Nephron. 2018;139(Suppl 1):105–16.

    Article  CAS  PubMed  Google Scholar 

  40. White A, Wong W, Sureshkumur P, Singh G. The burden of kidney disease in indigenous children of Australia and New Zealand, epidemiology, antecedent factors and progression to chronic kidney disease. J Paediatr Child Health. 2010;46(9):504–9.

    Article  PubMed  Google Scholar 

  41. Harambat J, Bonthuis M, Groothoff JW, et al. Lessons learned from the ESPN/ERA-EDTA registry. Pediatr Nephrol. 2016;31(11):2055–64.

    Article  PubMed  Google Scholar 

  42. Konstantyner T, Sesso R, de Camargo MF, de Santis Feltran L, Koch-Nogueira PC. Pediatric chronic Dialysis in Brazil: epidemiology and regional inequalities. PLoS One. 2015;10(8):e0135649.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kamath N, Iyengar A, George N, Luyckx VA. Risk factors and rate of progression of CKD in children. Kidney Int Rep. 2019;4(10):1472–7.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ardissino G, Dacco V, Testa S, et al. Epidemiology of chronic renal failure in children: data from the ItalKid project. Pediatrics. 2003;111(4 Pt 1):382–7.

    Article  Google Scholar 

  45. Bek K, Akman S, Bilge I, et al. Chronic kidney disease in children in Turkey. Pediatr Nephrol. 2009;24(4):797–806.

    Article  PubMed  Google Scholar 

  46. Ishikura K, Uemura O, Ito S, et al. Pre-dialysis chronic kidney disease in children: results of a nationwide survey in Japan. Nephrol Dial Transplant. 2013;28(9):2345–55.

    Article  CAS  PubMed  Google Scholar 

  47. Odetunde OI, Okafor HU, Uwaezuoke SN, Ezeonwu BU, Adiele KD, Ukoha OM. Chronic kidney disease in children as seen in a tertiary hospital in Enugu, south-east, Nigeria. Niger J Clin Pract. 2014;17(2):196–200.

    Article  CAS  PubMed  Google Scholar 

  48. Peco-Antic A, Bogdanovic R, Paripovic D, et al. Epidemiology of chronic kidney disease in children in Serbia. Nephrol Dial Transplant. 2012;27(5):1978–84.

    Article  PubMed  Google Scholar 

  49. Kopp JB, Nelson GW, Sampath K, et al. APOL1 genetic variants in focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol: JASN. 2011;22(11):2129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ng DK, Robertson CC, Woroniecki RP, et al. APOL1-associated glomerular disease among African-American children: a collaboration of the chronic kidney disease in children (CKiD) and Nephrotic syndrome study network (NEPTUNE) cohorts. Nephrol Dial Transplant. 2017;32(6):983–90.

    PubMed  Google Scholar 

  51. Purswani MU, Patel K, Winkler CA, et al. Brief report: APOL1 renal risk variants are associated with chronic kidney disease in children and youth with perinatal HIV infection. J Acquir Immune Defic Syndr. 2016;73(1):63–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Al Riyami MS, Al Shehhi M, Al Sulaimi T, et al. Epidemiology and outcome of CKD in Omani children. Kidney Int Rep. 2019;4(5):727–32.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hamed RM. The spectrum of chronic renal failure among Jordanian children. J Nephrol. 2002;15(2):130–5.

    PubMed  Google Scholar 

  54. Madani K, Otoukesh H, Rastegar A, Van Why S. Chronic renal failure in Iranian children. Pediatr Nephrol. 2001;16(2):140–4.

    Article  CAS  PubMed  Google Scholar 

  55. Orta-Sibu N, Lopez M, Moriyon JC, Chavez JB. Renal diseases in children in Venezuela, South America. Pediatr Nephrol. 2002;17(7):566–9.

    Article  PubMed  Google Scholar 

  56. Gonzalez-Quiroz M, Smpokou ET, Silverwood RJ, et al. Decline in kidney function among apparently healthy young adults at risk of Mesoamerican nephropathy. J Am Soc Nephrol. 2018;29(8):2200–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ramírez-Rubio O, Amador JJ, Kaufman JS, et al. Urine biomarkers of kidney injury among adolescents in Nicaragua, a region affected by an epidemic of chronic kidney disease of unknown aetiology. Nephrol Dial Transplant. 2016;31(3):424–32.

    Article  PubMed  Google Scholar 

  58. Ritchie AG, Clayton PA, Mackie FE, Kennedy SE. Nationwide survey of adolescents and young adults with end-stage kidney disease. Nephrology. 2012;17(6):539–44.

    Article  PubMed  Google Scholar 

  59. Amaral S, Sayed BA, Kutner N, Patzer RE. Preemptive kidney transplantation is associated with survival benefits among pediatric patients with end-stage renal disease. Kidney Int. 2016;90(5):1100–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Patzer RE, Sayed BA, Kutner N, McClellan WM, Amaral S. Racial and ethnic differences in pediatric access to preemptive kidney transplantation in the United States. Am J Transplant. 2013;13(7):1769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tjaden LA, Noordzij M, van Stralen KJ, et al. Racial disparities in access to and outcomes of kidney transplantation in children, adolescents, and young adults: results from the ESPN/ERA-EDTA (European Society of Pediatric Nephrology/European renal association-European Dialysis and transplant association) registry. Am J Kidney Dis. 2016;67(2):293–301.

    Article  PubMed  Google Scholar 

  62. Hogan J, Ranchin B, Fila M, et al. Effect of center practices on the choice of the first dialysis modality for children and young adults. Pediatr Nephrol. 2017;32(4):659–67.

    Article  PubMed  Google Scholar 

  63. Lalji R, Francis A, Wong G, et al. Disparities in end-stage kidney disease care for children: a global survey. Kidney Int. 2020;98(3):527–32.

    Article  PubMed  Google Scholar 

  64. Bonthuis M, Cuperus L, Chesnaye NC, et al. Results in the ESPN/ERA-EDTA registry suggest disparities in access to kidney transplantation but little variation in graft survival of children across Europe. Kidney Int. 2020;98(2):464–75.

    Article  PubMed  Google Scholar 

  65. Amaral S, McCulloch CE, Black E, et al. Trends in living donation by race and ethnicity among children with end-stage renal disease in the United States, 1995-2015. Transplant Direct. 2020;6(7):e570.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Amaral S, Patzer R. Disparities, race/ethnicity and access to pediatric kidney transplantation. Curr Opin Nephrol Hypertens. 2013;22(3):336–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Francis A, Wong G. Different sized slices of cake: macroeconomic impacts on access to transplantation and graft survival for children. Kidney Int. 2020;98(2):283–5.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Staples AO, Greenbaum LA, Smith JM, et al. Association between clinical risk factors and progression of chronic kidney disease in children. Clin J Am Soc Nephrol. 2010;5(12):2172–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Furth SL, Pierce C, Hui WF, et al. Estimating time to ESRD in children with CKD. Am J Kidney Dis. 2018;71(6):783–92.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Warady BA, Abraham AG, Schwartz GJ, et al. Predictors of rapid progression of glomerular and nonglomerular kidney disease in children and adolescents: the chronic kidney disease in children (CKiD) cohort. Am J Kidney Dis. 2015;65(6):878–88.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ekulu PM, Nkoy AB, Betukumesu DK, et al. APOL1 risk genotypes are associated with early kidney damage in children in sub-Saharan Africa. Kidney Int Rep. 2019;4(7):930–8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Crump C, Sundquist J, Winkleby MA, Sundquist K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: national cohort study. BMJ. 2019;365:l1346.

    Article  PubMed  PubMed Central  Google Scholar 

  73. White SL, Perkovic V, Cass A, et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis. 2009;54(2):248–61.

    Article  PubMed  Google Scholar 

  74. Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM. Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol: JASN. 2008;19(1):151–7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lackland DT, Bendall HE, Osmond C, Egan BM, Barker DJP. Low birth weights contribute to the high rates of early-onset chronic renal failure in the Southeastern United States. Arch Intern Med. 2000;160(10):1472–6.

    Article  CAS  PubMed  Google Scholar 

  76. Wuttke M, Wong CS, Wühl E, et al. Genetic loci associated with renal function measures and chronic kidney disease in children: the Pediatric investigation for genetic factors linked with renal progression consortium. Nephrol Dial Transplant. 2016;31(2):262–9.

    CAS  PubMed  Google Scholar 

  77. Ricardo AC, Pereira LN, Betoko A, et al. Parental health literacy and progression of chronic kidney disease in children. Pediatr Nephrol (Berlin, Germany). 2018;33(10):1759–64.

    Article  Google Scholar 

  78. Hidalgo G, Ng DK, Moxey-Mims M, et al. Association of income level with kidney disease severity and progression among children and adolescents with CKD: a report from the chronic kidney disease in children (CKiD) study. Am J Kidney Dis. 2013;62(6):1087–94.

    Article  PubMed  Google Scholar 

  79. Ishikura K, Uemura O, Hamasaki Y, et al. Progression to end-stage kidney disease in Japanese children with chronic kidney disease: results of a nationwide prospective cohort study. Nephrol Dial Transplant. 2014;29(4):878–84.

    Article  CAS  PubMed  Google Scholar 

  80. Mitsnefes M, Flynn J, Cohn S, et al. Masked hypertension associates with left ventricular hypertrophy in children with CKD. J Am Soc Nephrol: JASN. 2010;21(1):137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wühl E, Trivelli A, Picca S, et al. Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009;361(17):1639–50.

    Article  PubMed  Google Scholar 

  82. KDIGO. KDIGO clinical practice guideline on the management of blood pressure in chronic kidney disease. https://kdigo.org/wp-content/uploads/2016/10/KDIGO-BP-Management-GL-public-review-draft-8Feb2020.pdf. Published 2020. Accessed 3 Oct 2020.

  83. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med. 2006;144(1):21–8.

    Article  PubMed  Google Scholar 

  84. Vivante A, Golan E, Tzur D, et al. Body mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch Intern Med. 2012;172(21):1644–50.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bonthuis M, van Stralen KJ, Verrina E, et al. Underweight, overweight and obesity in paediatric dialysis and renal transplant patients. Nephrol Dial Transplant. 2013;28(suppl_4):iv195–204.

    PubMed  Google Scholar 

  86. Ku E, Glidden DV, Hsu C-Y, Portale AA, Grimes B, Johansen KL. Association of Body Mass Index with patient-Centered outcomes in children with ESRD. J Am Soc Nephrol. 2016;27(2):551–8.

    Article  CAS  PubMed  Google Scholar 

  87. Ku E, Kopple JD, McCulloch CE, et al. Associations between weight loss, kidney function decline, and risk of ESRD in the chronic kidney disease in children (CKiD) cohort study. Am J Kidney Dis. 2018;71(5):648–56.

    Article  PubMed  Google Scholar 

  88. Atkinson MA, Martz K, Warady BA, Neu AM. Risk for anemia in pediatric chronic kidney disease patients: a report of NAPRTCS. Pediatr Nephrol. 2010;25(9):1699–706.

    Article  PubMed  Google Scholar 

  89. Warady BA, Ho M. Morbidity and mortality in children with anemia at initiation of dialysis. Pediatr Nephrol. 2003;18(10):1055–62.

    Article  PubMed  Google Scholar 

  90. Staples AO, Wong CS, Smith JM, et al. Anemia and risk of hospitalization in pediatric chronic kidney disease. Clin J Am Soc Nephrol: CJASN. 2009;4(1):48–56.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rheault MN, Molony JT, Nevins T, Herzog CA, Chavers BM. Hemoglobin of 12 g/dl and above is not associated with increased cardiovascular morbidity in children on hemodialysis. Kidney Int. 2017;91(1):177–82.

    Article  CAS  PubMed  Google Scholar 

  92. KDIGO. Clinical Practice Guideline for Anemia in CKD. https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-Anemia-Guideline-English.pdf. Published 2012. Accessed.

    Google Scholar 

  93. Portale AA, Wolf MS, Messinger S, et al. Fibroblast growth factor 23 and risk of CKD progression in children. Clin J Am Soc Nephrol. 2016;11(11):1989–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Rodenbach KE, Schneider MF, Furth SL, et al. Hyperuricemia and progression of CKD in children and adolescents: the chronic kidney disease in children (CKiD) cohort study. Am J Kidney Dis. 2015;66(6):984–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wong CS, Hingorani S, Gillen DL, et al. Hypoalbuminemia and risk of death in pediatric patients with end-stage renal disease. Kidney Int. 2002;61(2):630–7.

    Article  PubMed  Google Scholar 

  96. Harambat J, Kunzmann K, Azukaitis K, et al. Metabolic acidosis is common and associates with disease progression in children with chronic kidney disease. Kidney Int. 2017;92(6):1507–14.

    Article  CAS  PubMed  Google Scholar 

  97. Winnicki E, Johansen KL, Cabana MD, et al. Higher eGFR at Dialysis initiation is not associated with a survival benefit in children. J Am Soc Nephrol. 2019;30(8):1505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tangri N, Grams ME, Levey AS, et al. Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta-analysis. JAMA. 2016;315(2):164–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Winnicki E, McCulloch CE, Mitsnefes MM, Furth SL, Warady BA, Ku E. Use of the kidney failure risk equation to determine the risk of progression to end-stage renal disease in children with chronic kidney disease. JAMA Pediatr. 2018;172(2):174–80.

    Article  PubMed  Google Scholar 

  100. Schaefer F, Trachtman H, Wühl E, et al. Association of Serum Soluble Urokinase Receptor Levels with Progression of kidney disease in children. JAMA Pediatr. 2017;171(11):e172914.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Weidemann DK, Abraham AG, Roem JL, Furth SL, Warady BA. Plasma soluble Urokinase plasminogen activator receptor (suPAR) and CKD progression in children. Am J Kidney Dis. 2020;76(2):194–202.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mitsnefes MM. Cardiovascular disease in children with chronic kidney disease. J Am Soc Nephrol. 2012;23(4):578–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Modi ZJ, Lu Y, Ji N, et al. Risk of cardiovascular disease and mortality in young adults with end-stage renal disease: An analysis of the US renal data system. JAMA Cardiol. 2019;4(4):353–62.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Parekh RS, Carroll CE, Wolfe RA, Port FK. Cardiovascular mortality in children and young adults with end-stage kidney disease. J Pediatr. 2002;141(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  105. Levey AS, Beto JA, Coronado BE, et al. Controlling the epidemic of cardiovascular disease in chronic renal disease: what do we know? What do we need to learn? Where do we go from here? National Kidney Foundation task force on cardiovascular disease. Am J Kidney Dis. 1998;32(5):853–906.

    Article  CAS  PubMed  Google Scholar 

  106. Saland JM, Pierce CB, Mitsnefes MM, et al. Dyslipidemia in children with chronic kidney disease. Kidney Int. 2010;78(11):1154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Samuels J, Ng D, Flynn JT, et al. Ambulatory blood pressure patterns in children with chronic kidney disease. Hypertension. 2012;60(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  108. Mitsnefes MM, Betoko A, Schneider MF, et al. FGF23 and left ventricular hypertrophy in children with CKD. Clin J Am Soc Nephrol. 2018;13(1):45–52.

    Article  CAS  PubMed  Google Scholar 

  109. Fischbach M, Zaloszyc A, Shroff R. The interdialytic weight gain: a simple marker of left ventricular hypertrophy in children on chronic haemodialysis. Pediatr Nephrol. 2015;30(6):859–63.

    Article  PubMed  Google Scholar 

  110. Srivaths PR, Silverstein DM, Leung J, Krishnamurthy R, Goldstein SL. Malnutrition-inflammation-coronary calcification in pediatric patients receiving chronic hemodialysis. Hemodial Int. 2010;14(3):263–9.

    Article  PubMed  Google Scholar 

  111. Schaefer F, Doyon A, Azukaitis K, et al. Cardiovascular phenotypes in children with CKD: the 4C study. Clin J Am Soc Nephrol: CJASN. 2017;12(1):19–28.

    Article  PubMed  Google Scholar 

  112. Mitsnefes M, Flynn J, Cohn S, et al. Masked hypertension associates with left ventricular hypertrophy in children with CKD. J Am Soc Nephrol. 2010;21(1):137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ku E, McCulloch CE, Ahearn P, Grimes BA, Mitsnefes MM. Trends in cardiovascular mortality among a cohort of children and young adults starting Dialysis in 1995 to 2015. JAMA Netw Open. 2020;3(9):e2016197.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Rodig NM, McDermott KC, Schneider MF, et al. Growth in children with chronic kidney disease: a report from the chronic kidney disease in children study. Pediatr Nephrol. 2014;29(10):1987–95.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Seikaly MG, Salhab N, Gipson D, Yiu V, Stablein D. Stature in children with chronic kidney disease: analysis of NAPRTCS database. Pediatr Nephrol. 2006;21(6):793–9.

    Article  PubMed  Google Scholar 

  116. Furth SL, Hwang W, Yang C, Neu AM, Fivush BA, Powe NR. Growth failure, risk of hospitalization and death for children with end-stage renal disease. Pediatr Nephrol. 2002;17(6):450–5.

    Article  PubMed  Google Scholar 

  117. Ku E, Fine RN, Hsu CY, et al. Height at first RRT and mortality in children. Clin J Am Soc Nephrol. 2016;11(5):832–9.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Haffner D, Schaefer F, Nissel R, Wühl E, Tönshoff B, Mehls O. Effect of growth hormone treatment on the adult height of children with chronic renal failure. German study Group for Growth Hormone Treatment in chronic renal failure. N Engl J Med. 2000;343(13):923–30.

    Article  CAS  PubMed  Google Scholar 

  119. Hussein R, Alvarez-Elías AC, Topping A, et al. A cross-sectional study of growth and metabolic bone disease in a Pediatric global cohort undergoing chronic Hemodialysis. J Pediatr. 2018;202:171–178.e173.

    Article  PubMed  Google Scholar 

  120. Al-Uzri A, Matheson M, Gipson DS, et al. The impact of short stature on health-related quality of life in children with chronic kidney disease. J Pediatr. 2013;163(3):736–741.e731.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Groothoff JW, Offringa M, Van Eck-Smit BL, et al. Severe bone disease and low bone mineral density after juvenile renal failure. Kidney Int. 2003;63(1):266–75.

    Article  PubMed  Google Scholar 

  122. Denburg MR, Kumar J, Jemielita T, et al. Fracture burden and risk factors in childhood CKD: results from the CKiD cohort study. J Am Soc Nephrol: JASN. 2016;27(2):543–50.

    Article  CAS  PubMed  Google Scholar 

  123. Chen K, Didsbury M, van Zwieten A, et al. Neurocognitive and educational outcomes in children and adolescents with CKD. A systematic review and meta-analysis. Clin J Am Soc Nephrol. 2018;13(3):387–97.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Fennell RS, Fennell EB, Carter RL, Mings EL, Klausner AB, Hurst JR. A longitudinal study of the cognitive function of children with renal failure. Pediatr Nephrol. 1990;4(1):11–5.

    Article  CAS  PubMed  Google Scholar 

  125. Hartung EA, Kim JY, Laney N, et al. Evaluation of Neurocognition in youth with CKD using a novel computerized neurocognitive battery. Clin J Am Soc Nephrol. 2016;11(1):39–46.

    Article  CAS  PubMed  Google Scholar 

  126. Slickers J, Duquette P, Hooper S, Gipson D. Clinical predictors of neurocognitive deficits in children with chronic kidney disease. Pediatr Nephrol (Berlin, Germany). 2007;22(4):565–72.

    Article  Google Scholar 

  127. Mendley SR, Matheson MB, Shinnar S, et al. Duration of chronic kidney disease reduces attention and executive function in pediatric patients. Kidney Int. 2015;87(4):800–6.

    Article  PubMed  Google Scholar 

  128. Gerson AC, Wentz A, Abraham AG, et al. Health-related quality of life of children with mild to moderate chronic kidney disease. Pediatrics. 2010;125(2):e349–57.

    Article  PubMed  Google Scholar 

  129. Clavé S, Tsimaratos M, Boucekine M, et al. Quality of life in adolescents with chronic kidney disease who initiate haemodialysis treatment. BMC Nephrol. 2019;20(1):163.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Medway M, Tong A, Craig JC, et al. Parental perspectives on the financial impact of caring for a child with CKD. Am J Kidney Dis. 2015;65(3):384–93.

    Article  PubMed  Google Scholar 

  131. Geense WW, van Gaal BGI, Knoll JL, Cornelissen EAM, van Achterberg T. The support needs of parents having a child with a chronic kidney disease: a focus group study. Child Care Health Dev. 2017;43(6):831–8.

    Article  CAS  PubMed  Google Scholar 

  132. Tong A, Lowe A, Sainsbury P, Craig JC. Experiences of parents who have children with chronic kidney disease: a systematic review of qualitative studies. Pediatrics. 2008;121(2):349–60.

    Article  PubMed  Google Scholar 

  133. Akchurin OM, Schneider MF, Mulqueen L, et al. Medication adherence and growth in children with CKD. Clin J Am Soc Nephrol. 2014;9(9):1519–25.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Andreoni KA, Forbes R, Andreoni RM, Phillips G, Stewart H, Ferris M. Age-related kidney transplant outcomes: health disparities amplified in adolescence. JAMA Intern Med. 2013;173(16):1524–32.

    Article  PubMed  Google Scholar 

  135. Tjaden LA, Vogelzang J, Jager KJ, et al. Long-term quality of life and social outcome of childhood end-stage renal disease. J Pediatr. 2014;165(2):336–342.e331.

    Article  PubMed  Google Scholar 

  136. Laskin BL, Mitsnefes MM, Dahhou M, Zhang X, Foster BJ. The mortality risk with graft function has decreased among children receiving a first kidney transplant in the United States. Kidney Int. 2015;87(3):575–83.

    Article  PubMed  Google Scholar 

  137. McDonald SP, Craig JC. Long-term survival of children with end-stage renal disease. N Engl J Med. 2004;350(26):2654–62.

    Article  CAS  PubMed  Google Scholar 

  138. Foster BJ, Mitsnefes MM, Dahhou M, Zhang X, Laskin BL. Changes in excess mortality from end stage renal disease in the United States from 1995 to 2013. Clin J Am Soc Nephrol: CJASN. 2018;13(1):91–9.

    Article  PubMed  Google Scholar 

  139. Ashuntantang G, Osafo C, Olowu WA, et al. Outcomes in adults and children with end-stage kidney disease requiring dialysis in sub-Saharan Africa: a systematic review. Lancet Glob Health. 2017;5(4):e408–17.

    Article  PubMed  Google Scholar 

  140. Ahearn P, Johansen KL, McCulloch CE, Grimes BA, Ku E. Sex disparities in risk of mortality among children with ESRD. Am J Kidney Dis. 2019;73(2):156–62.

    Article  PubMed  Google Scholar 

  141. Ku E, McCulloch CE, Grimes BA, Johansen KL. Racial and ethnic disparities in survival of children with ESRD. J Am Soc Nephrol. 2017;28(5):1584–91.

    Article  PubMed  Google Scholar 

  142. Hogan J, Couchoud C, Bonthuis M, et al. Gender disparities in access to Pediatric renal transplantation in Europe: data from the ESPN/ERA-EDTA registry. Am J Transplant. 2016;16(7):2097–105.

    Article  CAS  PubMed  Google Scholar 

  143. Carey WA, Martz KL, Warady BA. Outcome of patients initiating chronic peritoneal Dialysis during the first year of life. Pediatrics. 2015;136:e615–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine Ku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ku, E., Harambat, J. (2022). Epidemiology and Management of Chronic Kidney Disease in Children. In: Emma, F., Goldstein, S.L., Bagga, A., Bates, C.M., Shroff, R. (eds) Pediatric Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-030-52719-8_127

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-52719-8_127

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-52718-1

  • Online ISBN: 978-3-030-52719-8

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics