Skip to main content

Influence of Music on HRV Indices Derived from ECG and SCG

  • Conference paper
  • First Online:
Innovations in Biomedical Engineering (AAB 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1223))

Included in the following conference series:

  • 504 Accesses

Abstract

Music surrounds us every day and fulfills many functions. Its influence on human physiology has been widely described in the literature. In order to evaluate quantitatively this influence, we used heart rate variability (HRV) analysis on signals acquired before listening to the music and after listening to the music for 50  min. The following HRV indices were considered: AVNN, SDNN, RMSSD, pNN50, PLF, PHF, LF/HF, \(SD_1\), \(SD_2\), EA, VLI, and VAI. We observed no statistically significant differences between HRV indices calculated on signals registered before and after 50 min of listening to the music, although we observed the increase of PLF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bason, P.T., Celler, B.G.: Control of the heart rate by external stimuli. Nature 238(5362), 279–280 (1972)

    Google Scholar 

  2. Brennan, M., Palaniswami, M., Kamen, P.: Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng. 48(11), 1342–1347 (2001)

    Google Scholar 

  3. Chennafi, M., Khan, M.A., Li, G., Lian, Y., Wang, G.: Study of music effect on mental stress relief based on heart rate variability. In: 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 131–134 (2018)

    Google Scholar 

  4. Chiu, H.W., Lin, L.S., Kuo, M.C., Chiang, H.S., Hsu, C.Y.: Using heart rate variability analysis to assess the effect of music therapy on anxiety reduction of patients. Comput. Cardiol. 2003, 469–472 (2003)

    Google Scholar 

  5. García-González, M.A., Argelagós-Palau, A.,Fernández-Chimeno, M., Ramos-Castro, J.: A comparison ofheartbeat detectors for the seismocardiogram. In: Computing inCardiology 2013, pp. 461–464 (2013)

    Google Scholar 

  6. García-González, M.A., Argelagós, A., Fernández-Chimeno, M., Ramos-Castro, J.: Differences in QRS locations due to ECG lead: Relationship with breathing. In: Roa Romero, L.M. (ed.) XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, pp. 962–964. Springer International Publishing, Cham (2014)

    Google Scholar 

  7. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). Accessed 13 June 2000. Circulation Electronic Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218

  8. Hamilton, P.S., Tompkins, W.J.: Quantitative investigation of QRS detection rules using the MIT/BIH Arrhythmia Database. IEEE Trans. Biomed. Eng. BME-33(12), 1157–1165 (1986)

    Google Scholar 

  9. Karmakar, C.K., Gubbi, J., Khandoker, A.H., Palaniswami, M.: Analyzing temporal variability of standard descriptors of Poincaré plots. J. Electrocardiol. 43(6), 719–724 (2010)

    Google Scholar 

  10. Kitlas Golińska, A.: Poincaré plots in analysis of selected biomedical signals. Stud. Logic Grammar Rhetoric 35(1), 117–127 (2013)

    Google Scholar 

  11. Labbé, E., Schmidt, N., Babin, J., Pharr, M.: Coping with stress: the effectiveness of different types of music. Appl. Psychophysiol. Biofeedback 32(3), 163–168 (2007)

    Google Scholar 

  12. Landreani, F., Morri, M., Martin-Yebra, A., Casellato, C., Pavan, E., Frigo, C., Caiani, E.G.: Ultra-short-term heart rate variability analysis on accelerometric signals from mobile phone. In: 2017 E-Health and Bioengineering Conference (EHB), pp. 241–244. (2017)

    Google Scholar 

  13. Larsen, P.D., Galletly, D.C.: The sound of silence is music to the heart. Heart 92(4), 433–434 (2006)

    Google Scholar 

  14. Laurin, A., Blaber, A., Tavakolian, K.: Seismocardiograms return valid heart rate variability indices. Comput. Cardiol. 2013, 413–416 (2013)

    Google Scholar 

  15. İşler, Y., Kuntalp, M.: Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure. Comput. Biol. Med. 37(10), 1502–1510 (2007). QT Variability & Heart Rate Variability

    Google Scholar 

  16. Li, Y., Tang, X., Xu, Z.: An approach of heartbeat segmentation in seismocardiogram by matched-filtering. In: 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, vol. 2, pp. 47–51 (2015)

    Google Scholar 

  17. Pan, J., Tompkins, W.J.: A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME-32(3), 230–236 (1985)

    Google Scholar 

  18. Pandia, K., Inan, O.T., Kovacs, G.T.A., Giovangrandi, L.: Extracting respiratory information from seismocardiogram signals acquired on the chest using a miniature accelerometer. Physiol. Meas. 33(10), 1643–1660 (2012)

    Google Scholar 

  19. Ramos-Castro, J., Moreno, J.,Miranda-Vidal, H., García-González, M.A.,Fernández-Chimeno, M., Rodas, G., Capdevila, L.: Heart ratevariability analysis using a seismocardiogram signal. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5642–5645 (2012)

    Google Scholar 

  20. Ruan, X., Liu, C., Liu, C., Wang, X., Li, P.: Automatic detection of atrial fibrillation using R-R interval signal. In: 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), vol. 2, pp. 644–647 (2011)

    Google Scholar 

  21. Saykrs, B.: Analysis of heart rate variability. Ergonomics 16(1), 17–32 (1973). PMID: 4702060

    Google Scholar 

  22. Siecinski, S., Kostka, P.S., Tkacz, E.J.: Heart rate variability analysis on CEBS database signals. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5697–5700 (2018)

    Google Scholar 

  23. Siecinski, S., Tkacz, E.J., Kostka, P.S.: Comparison of HRV indices obtained from ECG and SCG signals from CEBS database. BioMedical Engineering OnLine (2019)

    Google Scholar 

  24. Skotnicka, M., Mitas, A.W.: About the measurement methods in music therapy. In: Piętka, E., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Biomedicine, vol. 4, pp. 203–214. Springer International Publishing, Cham (2014)

    Google Scholar 

  25. Tadi, M.J., Lehtonen, E., Koivisto, T., Pänkäälä, M., Paasio, A., Teräs, M.: Seismocardiography: toward heart rate variability (HRV) estimation. In: 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, pp. 261–266 (2015)

    Google Scholar 

  26. Tadi, M.J., Koivisto, T., Pänkäälä, M., Paasio, A.: Accelerometer-based method for extracting respiratory and cardiac gating information for dual gating during nuclear medicine imaging. Int. J. Biomed. Imaging 2014(690124), 1–11 (2014)

    Google Scholar 

  27. Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology: Heart Rate Variability. Standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996)

    Google Scholar 

  28. Zanetti, J.M., Poliac, M.O., Crow, R.S.: Seismocardiography: waveform identification and noise analysis. In: [1991] Proceedings Computers in Cardiology, pp. 49–52 (1991)

    Google Scholar 

  29. Zanetti, J.M., Salerno, D.M.: Seismocardiography: a technique for recording precordial acceleration. In: 1991 Proceedings of the Fourth Annual IEEE Symposium on Computer-Based Medical Systems, pp. 4–9 (1991)

    Google Scholar 

  30. Zanetti, J.M., Tavakolian, K.: Seismocardiography: Past, present and future. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7004–7007 (2013)

    Google Scholar 

  31. Zhou, P., Sui, F., Zhang, A., Wang, F., Li, G.: Music therapy on heart rate variability. In: 2010 3rd International Conference on Biomedical Engineering and Informatics, vol. 3, pp. 965–968 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szymon Sieciński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sieciński, S., Kostka, P. (2021). Influence of Music on HRV Indices Derived from ECG and SCG. In: Gzik, M., Paszenda, Z., Pietka, E., Tkacz, E., Milewski, K. (eds) Innovations in Biomedical Engineering. AAB 2020. Advances in Intelligent Systems and Computing, vol 1223. Springer, Cham. https://doi.org/10.1007/978-3-030-52180-6_39

Download citation

Publish with us

Policies and ethics