Skip to main content

A Meta-heuristic Based Approach for Slope Stability Analysis to Design an Optimal Soil Slope

  • Chapter
  • First Online:
Machine Learning Algorithms for Industrial Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 907))

  • 1601 Accesses

Abstract

Slope stability analysis is routinely performed due to geological instability found in earth slopes. It has been an important role in geotechnical engineering for all the times. Although the efficiency of modern technology has significantly improved, the slope stability analysis is becoming more difficult due to the existence of imprecise, uncertainties and discontinuous function in the actual scenario. Moreover, given the presence of local minima points, the position of the critical failure surface in slope stability analysis is made inaccurate and cumbersome. This work proposes a meta-heuristic based approach to locate critical failure surfaces under prevailing conditions and constraints. The reliability and efficiency of the approach are examined by investigating the benchmark case studies. The outcome results indicate that, the proposed approach could acquire acceptable performance over existing methods and attain a better solution quality in terms of accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fredlund, D. G., & Krahn, J. (1977). Comparison of slope stability methods of analysis. Canadian Geotechnical Journal, 14(3), 429–439.

    Article  Google Scholar 

  2. Fellenius, W. (1936). Calculation of stability of earth dam. In Transactions. 2nd Congress Large Dams, Washington, DC (Vol. 4, no. 7-8, pp. 445–462).

    Google Scholar 

  3. Bishop, A. W. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, 5(12), 7–17.

    Article  Google Scholar 

  4. Janbu, N. (1973). Slope stability computations. In R. C. Hirschfeld & S. J. Poulos (Eds.), Embankment-dam engineering textbook (Vol. 12, no. 4, pp. 67). John Wiley and Sons Inc., Thomas Telford Ltd.

    Google Scholar 

  5. Chen, Z. Y., & Shao, C. M. (1988). Evaluation of minimum factor of safety in slope stability analysis. Canadian Geotechnical Journal, 25(4), 735–748.

    Article  Google Scholar 

  6. Greco, V. R. (1996). Efficient Monte Carlo technique for locating critical slip surface. Journal of Geotechnical Engineering, American Society of Civil Engineers, 122(7), 517–525.

    Article  Google Scholar 

  7. Cheng, Y. M., Li, L., & Chi, S. C. (2007). Performance studies on six heuristic global optimization methods in the location of critical slip surface. Computers and Geotechnics, 34(6), 462–484.

    Article  Google Scholar 

  8. Zolfaghari, A. R., Heath, A. C., & McCombie, P. F. (2005). Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Computers and Geotechnics, 32(3), 139–152.

    Article  Google Scholar 

  9. Malkawi, A. I. H., Hassan, W. F., & Sarma, S. K. (2001). Global search method for locating general slip surface using Monte Carlo techniques. Journal of Geotechnical and Geoenvironmental Engineering, 127(8), 688–698.

    Article  Google Scholar 

  10. Sun, J., Li, J., & Liu, Q. (2008). Search for critical slip surface in slope stability analysis by spline-based GA method. Journal of Geotechnical and Geoenvironmental Engineering, 134(2), 252–256.

    Article  Google Scholar 

  11. Sengupta, A., & Upadhyay, A. (2009). Locating the critical failure surface in a slope stability analysis by genetic algorithm. Applied Soft Computing, 9(1), 387–392.

    Article  Google Scholar 

  12. Kahatadeniya, K. S., Nanakorn, P., & Neaupane, K. M. (2009). Determination of the critical failure surface for slope stability analysis using ant colony optimization. Engineering Geology, 108(1), 133–141.

    Article  Google Scholar 

  13. Kashani, A. R., Gandomi, A. H., & Mousavi, M. (2016). Imperialistic competitive algorithm: A metaheuristic algorithm for locating the critical slip surface in 2-dimensional soil slopes. Geoscience Frontiers, 7(1), 83–89.

    Article  Google Scholar 

  14. Singh, J., Banka, H., & Verma, A. K. (2019). A BBO-based algorithm for slope stability analysis by locating critical failure surface. Neural Computing and Applications, 31(10), 6401–6418.

    Article  Google Scholar 

  15. Cheng, Y. M., Li, L., Chi, S., & Wei, W. B. (2007). Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis. Computers and Geotechnics, 34(2), 92–103.

    Article  Google Scholar 

  16. Singh, J., Banka, H., & Verma, A. K. (2018). Analysis of slope stability and detection of critical failure surface using gravitational search algorithm. In Fourth International Conference on Recent Advances in Information Technology (RAIT) (pp. 1-6). IEEE.

    Google Scholar 

  17. Singh, J., Banka, H., & Verma, A. K. (2019). Locating critical failure surface using meta-heuristic approaches: A comparative assessment. Arabian Journal of Geosciences, 12(9), 307.

    Article  Google Scholar 

  18. Singh, J., Verma, A. K., & Banka, H. (2018). Application of biogeography based optimization to locate critical slip surface in slope stability evaluation. In Fourth International Conference on Recent Advances in Information Technology (RAIT) (pp. 1–5) IEEE.

    Google Scholar 

  19. Aryal, K. P. (2006). Slope stability evaluations by limit equilibrium and finite element methods. Ph.D. thesis, Norwegian University of Science and Technology.

    Google Scholar 

  20. Fister, I., Fister, I, Jr., Yang, X., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13, 34–46.

    Article  Google Scholar 

  21. Yamagami, T. (1988). Search for noncircular slip surfaces by the Morgenstern-Price method. In Proceedings of the 6th International Conference Numerical Methods in Geomechanics (pp. 1335–1340).

    Google Scholar 

  22. Solati, S., & Habibagahi, G. (2006). A genetic approach for determining the generalized interslice forces and the critical non-circular slip surface. Iranian Journal of Science and Technology, Transaction B, Engineering, Shiraz University, 30(1), 1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayraj Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, J., Banka, H. (2021). A Meta-heuristic Based Approach for Slope Stability Analysis to Design an Optimal Soil Slope. In: Das, S., Das, S., Dey, N., Hassanien, AE. (eds) Machine Learning Algorithms for Industrial Applications. Studies in Computational Intelligence, vol 907. Springer, Cham. https://doi.org/10.1007/978-3-030-50641-4_12

Download citation

Publish with us

Policies and ethics