Skip to main content
  • 1865 Accesses

Abstract

The octopus offers an enticing paradigm for the control of distributed, high-dimensional, underwater systems. Octopus arms are composed almost entirely of muscles, arranged in highly organized patterns, allowing active control of bending, twisting, and stretching. In particular, the octopus can form pointed joints along an arm to quickly fetch objects from a distance, and can use its arms to crawl bipedally on the seafloor. Here, we analyze image data of fetch and crawl motions, then reproduce these behaviors in a three-dimensional elastic filament model of the octopus arm. We first constrain the tip of the arm to follow prescribed trajectories consistent with experimental observations. We then reverse engineer the active internal forces and moments that produce compatible full arm movements, thus developing blueprints for basic motion primitives. We conclude by analyzing the effect of compliance on robustness of these motions to environmental variations and by commenting on the implications of our results to the motor control of cephalopods and to the development of control strategies for soft robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. D.S. Adams, R. Keller, M. Koehl, The mechanics of notochord elongation, straightening and stiffening in the embryo of Xenopus laevis. Development 110(1), 115–130 (1990)

    Google Scholar 

  2. N. Agre, S. Childress, J. Zhang, L. Ristroph, Linear drag law for high-Reynolds-number flow past an oscillating body. Phys. Rev. Fluids 1(3), 033202 (2016)

    Google Scholar 

  3. J. Altman, Control of accept and reject reflexes in the octopus. Nature 229(5281), 204 (1971)

    Google Scholar 

  4. S.S. Antman, Kirchhoff’s problem for nonlinearly elastic rods. Quart. Appl. Math. 32(3), 221–240 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. S.S. Antman, Nonlinear Problems of Elasticity (Springer, Berlin, 1995)

    Book  MATH  Google Scholar 

  6. B. Audoly, Y. Pomeau, Elasticity and geometry, in Peyresq Lectures on Nonlinear Phenomena (World Scientific, Singapore, 2000), pp. 1–35

    Book  MATH  Google Scholar 

  7. M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, E. Grinspun, Discrete elastic rods. ACM Trans. Graph. 27(3), 63 (2008)

    Google Scholar 

  8. G. Duane, T. Evans, C. Poe, D. Royle, A coconut octopus uses tools to snatch a crab. YouTube (2017). https://youtu.be/BFda1MZ54G4

  9. M. Gazzola, L. Dudte, A. McCormick, L. Mahadevan, Forward and inverse problems in the mechanics of soft filaments. R. Soc. Open Sci. 5(6), 171628 (2018)

    Google Scholar 

  10. F. Giorgio-Serchi, G.D. Weymouth, Drag cancellation by added-mass pumping. J. Fluid Mech. 798, R3 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. N. Giri, I. Walker, Continuum robots and underactuated grasping. Mech. Sci. 2(1):51–58 (2011)

    Article  Google Scholar 

  12. R. Godoy-Diana, B. Thiria, On the diverse roles of fluid dynamic drag in animal swimming and flying. J. R. Soc. Interface. 15(139), 20170715 (2018)

    Google Scholar 

  13. L. Groskin, C. Baker, C. Huffard, J. Grubich, Run, octopus, run! YouTube (2015). https://youtu.be/23qzi88k3aM

  14. Y. Gutfreund, T. Flash, G. Fiorito, B. Hochner, Patterns of arm muscle activation involved in octopus reaching movements. J. Neurosci. 18(15), 5976–5987 (1998)

    Article  Google Scholar 

  15. B. Hochner, An embodied view of octopus neurobiology. Curr. Biol. 22(20):R887–R892 (2012)

    Article  Google Scholar 

  16. S. Hoshyari, H. Xu, E. Knoop, S. Coros, M. Bächer, Vibration-minimizing motion retargeting for robotic characters. ACM Trans. Graph. 38(4), 102 (2019)

    Google Scholar 

  17. C.L. Huffard, F. Boneka, R.J. Full, Underwater bipedal locomotion by octopuses in disguise. Science 307(5717), 1927–1927 (2005)

    Article  Google Scholar 

  18. B.A. Jones, I.D. Walker, Practical kinematics for real-time implementation of continuum robots. IEEE Trans. Robot. 22(6), 1087–1099 (2006)

    Article  Google Scholar 

  19. B.A. Jones, I.D. Walker, Kinematics for multisection continuum robots. IEEE Trans. Robot. 22(1), 43–55 (2006)

    Article  Google Scholar 

  20. R. Kang, D.T. Branson, E. Guglielmino, D.G. Caldwell, Dynamic modeling and control of an octopus inspired multiple continuum arm robot. Comput. Math. Appl. 64(5), 1004–1016 (2012)

    Article  MATH  Google Scholar 

  21. E. Kanso, Swimming due to transverse shape deformations. J. Fluid Mech. 631, 127–148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Kanso, J.E. Marsden, C.W. Rowley, J.B. Melli-Huber, Locomotion of articulated bodies in a perfect fluid. J. Nonlinear Sci. 15(4), 255–289 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ł. Kidziński, S.P. Mohanty, C.F. Ong, Z. Huang, S. Zhou, A. Pechenko, et al. Learning to run challenge solutions: adapting reinforcement learning methods for neuromusculoskeletal environments, in The NIPS’17 Competition: Building Intelligent Systems (Springer, Berlin, 2018), pp. 121–153

    Google Scholar 

  24. W.M. Kier, The diversity of hydrostatic skeletons. J. Exp. Biol. 215(8), 1247–1257 (2012)

    Article  Google Scholar 

  25. W.M. Kier, The musculature of coleoid cephalopod arms and tentacles. Front. Cell Dev. Biol. 4, 10 (2016)

    Article  Google Scholar 

  26. W.M. Kier, A.M. Smith, The morphology and mechanics of octopus suckers. Biol. Bull. 178(2), 126–136 (1990)

    Article  Google Scholar 

  27. W.M. Kier, A.M. Smith, The structure and adhesive mechanism of octopus suckers. Integr. Comp. Biol. 42(6), 1146–1153 (2002)

    Article  Google Scholar 

  28. W.M. Kier, J.T. Thompson, Muscle arrangement, function and specialization in recent coleoids. Berliner Paläobiologische Abhandlungen 3, 141–162 (2003)

    Google Scholar 

  29. G. Kirchhoff, Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. J. für die reine und angewandte Mathematik. 56, 285–313 (1859)

    MathSciNet  Google Scholar 

  30. M. Koehl, K.J. Quillin, C.A. Pell, Mechanical design of fiber-wound hydraulic skeletons: the stiffening and straightening of embryonic notochords. Am. Zool. 40(1), 28–041 (2000)

    Google Scholar 

  31. M.J. Kuba, R.A. Byrne, D.V. Meisel, J.A. Mather, Exploration and habituation in intact free moving octopus vulgaris. Int. J. Comp. Psychol. 19(4), 426–438 (2006)

    Google Scholar 

  32. S. Lee, M. Park, K. Lee, J. Lee, Scalable muscle-actuated human simulation and control. ACM Trans. Graph. 38(4), 73 (2019)

    Google Scholar 

  33. G. Levy, B. Hochner, Embodied organization of Octopus vulgaris morphology, vision, and locomotion. Frontiers in Physiology 8, 164 (2017)

    Article  Google Scholar 

  34. G. Levy, T. Flash, B. Hochner, Arm coordination in octopus crawling involves unique motor control strategies. Curr. Biol. 25(9), 1195–1200 (2015)

    Article  Google Scholar 

  35. F. Ling, H. Guo, E. Kanso, Instability-driven oscillations of elastic microfilaments. J. R. Soc. Interface 15(149), 20180594 (2018)

    Google Scholar 

  36. A.E.H. Love, A treatise on the mathematical theory of elasticity (2013), Cambridge university press

    Google Scholar 

  37. W. McMahan, I.D. Walker, Octopus-inspired grasp-synergies for continuum manipulators, in 2008 IEEE International Conference on Robotics and Biomimetics (IEEE, Piscataway, 2009), pp. 945–950

    Book  Google Scholar 

  38. W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I.D. Walker, B.A. Jones, et al., Field trials and testing of the OctArm continuum manipulator, in Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006 (IEEE, Piscataway, 2006), pp. 2336–2341

    Google Scholar 

  39. D. Mokbel, H. Abels, S. Aland, A phase-field model for fluid–structure interaction. J. Comput. Phys. 372, 823–840 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Neukirch S, et al., Vibrations of post-buckled rods: the singular inextensible limit. J. Sound Vib. 331(3), 704–720 (2012)

    Article  Google Scholar 

  41. C.S. Peskin, The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Pfeifer, J. Bongard, How the Body Shapes the Way We Think: A New View of Intelligence (MIT Press, Cambridge, 2006)

    Book  Google Scholar 

  43. F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, C. Laschi, A 3D steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm. Bioinspir. Biomim. 7(2), 025006 (2012)

    Google Scholar 

  44. C.H. Rycroft, Y. Sui, E. Bouchbinder, An Eulerian projection method for quasi-static elastoplasticity. J. Comput. Phys. 300, 136–166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. G. Sumbre, Y. Gutfreund, G. Fiorito, T. Flash, B. Hochner, Control of octopus arm extension by a peripheral motor program. Science 293(5536), 1845–1848 (2001)

    Article  Google Scholar 

  46. G. Sumbre, G. Fiorito, T. Flash, B. Hochner, Neurobiology: motor control of flexible octopus arms. Nature 433(7026), 595 (2005)

    Google Scholar 

  47. G. Sumbre, G. Fiorito, T. Flash, B. Hochner, Octopuses use a human-like strategy to control precise point-to-point arm movements. Curr. Biol. 16(8), 767–772 (2006)

    Article  Google Scholar 

  48. S. Vogel, Life in Moving Fluids: The Physical Biology of Flow (Princeton University Press, Princeton, 1994)

    Google Scholar 

  49. I.D. Walker, D.M. Dawson, T. Flash, F.W. Grasso, R.T. Hanlon, B. Hochner, et al., Continuum robot arms inspired by cephalopods, in Unmanned Ground Vehicle Technology VII, vol. 5804 (International Society for Optics and Photonics, 2005), pp. 303–315

    Google Scholar 

  50. G. Weymouth, V. Subramaniam, M. Triantafyllou, Ultra-fast escape maneuver of an octopus-inspired robot. Bioinspir. Biomim. 10(1), 016016 (2015)

    Google Scholar 

  51. C.H. Wiggins, R.E. Goldstein, Flexive and propulsive dynamics of elastica at Low Reynolds number. Phys. Rev. Lett. 80, 3879–3882 (1998)

    Article  Google Scholar 

  52. J.Z. Young, Anatomy of the nervous system of octopus vulgaris (Clarendon Press,Oxford, 1971)

    Google Scholar 

  53. X. Zhang, F.K. Chan, T. Parthasarathy, M. Gazzola, Modeling and simulation of complex dynamic musculoskeletal architectures. Nat. Commun. 10(1), 1–12 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported via a Basic Research Challenge Grant from the Office of Naval Research, ONR Award Number N00014-17-1-2062, and a research grant from the Army Research Office, ARO Award Number W911NF-16-1-0074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Kanso .

Editor information

Editors and Affiliations

Appendix: Numerical Implementation

Appendix: Numerical Implementation

To solve for the filament dynamics in three dimensions, we numerically integrate the governing equations (11.1), together with the corresponding boundary conditions. To this end, we discretize the filament’s centerline into n + 1 vertices r 1, …, r n+1 and n straight edges i = r i+1 −r i, where i = 1, …, n, in the spirit of [7, 9]. The unit tangent to edge i is defined as t i = i i, where i = ∥ i∥. The translational velocities v 1, …v n+1 are assigned to vertices. The body frames {d 1,i, d 2,i, d 3,i = t i} and the rotation matrices Q i are naturally assigned to edges.

To obtain a discrete representation of the generalized curvature vector κ, we start from the definition of the associated skew-symmetric matrix κ × = Q(Q)T. The solution to this first-order differential equation is of the form \(\mathbf {Q}(s+\Delta s) = \exp (-\boldsymbol {\kappa }^\times \Delta s)\mathbf {Q}(s)\), where Δs is a segment of constant curvature. Thus, writing \({\mathbf {Q}}_i = \exp (-\boldsymbol {\kappa }_{i}^\times \overline {\ell }_i){\mathbf {Q}}_{i-1}\), we define the discrete curvature matrix as \(\boldsymbol {\kappa }_{i}^\times =-{\log \big ({\mathbf {Q}}_{i}{\mathbf {Q}}^{\mathsf {T}}_{i-1}\big )}/{\overline {\ell }_i}\), where \(\overline {\ell }_i=\frac {1}{2} (\ell _{i-1}+\ell _{i})\) is a Voronoi integration domain from the midpoint of the previous edge to that of the next edge. Given \(\boldsymbol {\kappa }_{i}^\times \), we can readily evaluate κ i and the discrete elastic moments M i in the filament material frame.

When computing derivatives of quantities expressed in the body frame (i.e., on edges), we need to consider appropriate frame transport. For example, the derivative of the internal moment is computed as follows:

$$\displaystyle \begin{aligned} \left(\frac{\partial \mathbf{M}}{\partial s} \right)_i=\mathcal{D}\big[{\mathbf{B}}_{i}\boldsymbol{{\kappa}}_{i}\big] + \mathcal{A}\big[\underbrace{(\boldsymbol{{\kappa}}_{i}\overline{\ell}_i)\times({\mathbf{B}}_{i}\boldsymbol{{\kappa}}_{i})}_{\text{frame}\ \text{transport}}\big], \end{aligned} $$
(11.7)

where \(\mathcal {D}\) is a forward difference operator and \(\mathcal {A}\) an averaging operator that maps quantities from adjacent vertices to the in-between edge. Specifically, when expressed in matrix form, the operators \(\mathcal {D}\) and \(\mathcal {A}\) have entries \(\mathcal {D}_{ij} = \delta _{i,j+1} - \delta _{ij}\) and \(\mathcal {A}_{ij} = \left (\delta _{i,j+1} + \delta _{ij}\right )/2\).

We solve the force and moment quantities in the strain-free reference configuration. Therefore, we need to adjust all quantities expressed in the current geometric configuration to the strain-free reference configuration denoted by \(\hat {(\cdot )}\). Provided that cross-sections retain their circular shapes at all times, we need only to account for a local dilation scalar \(e_i =\ell _i/\hat {\ell }_i\) at appropriate places in the discretized equations to ensure consistency. Specifically, due to the conservation of volume of an infinitesimal volume element, a dilation in edge length translates to a shrinkage of cross-sectional area; namely, we have \(\ell _iA_i= \hat {\ell }_i\hat {A}_i\) which implies that \({A}_i = \hat {A}_i/e_i\). Consequently, the discrete bending/twisting rigidity tensor \(\hat {\mathbf {B}}_i\) and tensile stiffness \(\hat {K}_i\) in the stain-free reference configuration are related to B i and K i in the current configuration via \({\mathbf {B}}_i=\hat {\mathbf {B}}_i/{e_i^2}\) and \(K_i=\hat {K}_i/{e_i}\). All length quantities need to scaled by a factor of e i when converted to the strain-free reference configuration. In addition, because we use the integration domain \(\overline {\ell }_i\), all quantities that vary with arc-length over the Voronoi region need to be properly averaged. For example, the dilation factor e is averaged over \(\overline {\ell }_i\) using \(\langle {e}_i \rangle =\left ({e_{i}\hat {\ell }_{i}+e_{i-1}\hat {\ell }_{i-1}}\right )/{2\hat {\overline {\ell }}_i}\). To adjust the generalized curvature with respect to the dilation factor, we write \(\boldsymbol {{\kappa }}_i=\hat {\boldsymbol {{\kappa }}}_i/\langle {e}_i \rangle \).

The inextensibility condition is enforced weakly by setting K ≈ 105B, requiring the use of standard time integrators for stiff equations (MATLAB’s ode15s) to propagate the filament position r i forward in time. We enforce boundary conditions strongly by fixing r and t at the appropriate end vertices. Results of this numerical method have been validated against standard analytical results (e.g., Euler buckling and Mitchell’s instability thresholds, deflection curve of nonshearable cantilever beam). For more details, see the supplemental material accompanying [35].

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ling, F., Kanso, E. (2021). Octopus-Inspired Arm Movements. In: Paley, D.A., Wereley, N.M. (eds) Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-50476-2_11

Download citation

Publish with us

Policies and ethics