Skip to main content

3-D Tissue Image Reconstruction from Digitized Serial Histologic Sections to Visualize Small Tumor Nests in Lung Adenocarcinomas

  • Chapter
  • First Online:
Information Technology in Biomedicine

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1186))

Abstract

3-D histology has become an attractive technique providing insights into morphology of histologic specimens. However, existing techniques in generating 3-D views from a stack of whole slide images are scarce or suffer from poor co-registration performance when displaying diagnostically important areas at sub-cellular resolution. Our team developed a new scale-invariant feature transform (SIFT)-based workflow to co-register histology images and facilitate 3-D visualization of micro-structures important in histopathology of lung adenocarcinoma. The co-registration accuracy and visualization capacity of the workflow were tested by digitally perturbing the staining coloration seven times. The perturbation slightly affected the co-registration but overall the co-registration errors remained very small when compared to those published to date. The workflow yielded accurate visualizations of expert-selected regions permitting confident 3-D evaluation of the clusters. Our workflow could support the evaluation of histologically complex tumors such as lung adenocarcinomas that are currently routinely viewed by pathologists in 2-D on slides, but could benefit from 3-D visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arganda-Carreras, I., Sorzano, C.O.S., Marabini, R., Carazo, J.M., Ortiz-de Solorzano, C., Kybic, J.: Consistent and elastic registration of histological sections using vector-spline regularization. In: Beichel, R.R., Sonka, M. (eds.) Computer Vision Approaches to Medical Image Analysis, pp. 85–95. Springer, Berlin (2006). https://doi.org/10.1007/11889762_8

  2. Falk, M., Ynnerman, A., Treanor, D., Lundström, C.: Interactive visualization of 3D histopathology in native resolution. IEEE Trans. Vis. Comput. Graph. 25(1), 1008–1017 (2019). https://doi.org/10.1109/TVCG.2018.2864816

    Article  Google Scholar 

  3. Farahani, N., Braun, A., Jutt, D., Huffman, T., Reder, N., Liu, Z., Yagi, Y., Pantanowitz, L.: Three-dimensional imaging and scanning: current and future applications for pathology. J. Pathol. Inf. 8(1), 36 (2017). https://doi.org/10.4103/jpi.jpi_32_17

    Article  Google Scholar 

  4. Gertych, A., Swiderska-Chadaj, Z., Ma, Z., Ing, N., Markiewicz, T., Cierniak, S., Salemi, H., Guzman, S., Walts, A.E., Knudsen, B.S.: Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Sci. Rep. 9(1) (2019). https://doi.org/10.1038/s41598-018-37638-9

  5. Gibson, E., Gaed, M., Gómez, J., Moussa, M., Pautler, S., Chin, J., Crukley, C., Bauman, G., Fenster, A., Ward, A.: 3D prostate histology image reconstruction: quantifying the impact of tissue deformation and histology section location. J. Pathol. Inf. 4(1), 31 (2013)

    Article  Google Scholar 

  6. Kadota, K., Nitadori, J., Sima, C.S., Ujiie, H., Rizk, N.P., Jones, D.R., Adusumilli, P.S., Travis, W.D.: Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small stage 1 lung adenocarcinomas. J. Thoracic Oncol. 10(5), 806–814 (2015). https://doi.org/10.1097/JTO.0000000000000486

    Article  Google Scholar 

  7. Kartasalo, K., Latonen, L., Vihinen, J., Visakorpi, T., Nykter, M., Ruusuvuori, P.: Comparative analysis of tissue reconstruction algorithms for 3D histology. Bioinformatics 34(17), 3013–3021 (2018). https://doi.org/10.1093/bioinformatics/bty210

    Article  Google Scholar 

  8. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, ICCV ’99, vol. 2, p. 1150. IEEE Computer Society, USA (1999)

    Google Scholar 

  9. Ma, Z., Shiao, S.L., Yoshida, E.J., Swartwood, S., Huang, F., Doche, M.E., Chung, A.P., Knudsen, B.S., Gertych, A.: Data integration from pathology slides for quantitative imaging of multiple cell types within the tumor immune cell infiltrate. Diagn. Pathol. 12(1) (2017). https://doi.org/10.1186/s13000-017-0658-8

  10. Magee, D., Song, Y., Gilbert, S., Roberts, N., Wijayathunga, N., Wilcox, R., Bulpitt, A., Treanor, D.: Histopathology in 3D: from three-dimensional reconstruction to multi-stain and multi-modal analysis. J. Pathol. Inf. 6(1), 6 (2015). https://doi.org/10.4103/2153-3539.151890

    Article  Google Scholar 

  11. Morales-Oyarvide, V., Mino-Kenudson, M.: Taking the measure of lung adenocarcinoma: towards a quantitative approach to tumor spread through air spaces (STAS). J. Thorac. Dis. 9(9) (2017). https://doi.org/10.21037/jtd.2017.07.97

  12. Onozato, M., Klepeis, V., Yagi, Y., Mino-Kenudson, M.: A role of three-dimensional (3D)-reconstruction in the classification of lung adenocarcinoma. Anal. Cell. Pathol. 35(2), 79–84 (2012). https://doi.org/10.3233/ACP-2011-0030

    Article  Google Scholar 

  13. Onozato, M.L., Hammond, S., Merren, M., Yagi, Y.: Evaluation of a completely automated tissue-sectioning machine for paraffin blocks. J. Clin. Pathol. 66(2), 151–154 (2013). https://doi.org/10.1136/jclinpath-2011-200205

    Article  Google Scholar 

  14. Pantanowitz, L., Valenstein, P., Evans, A., Kaplan, K., Pfeifer, J., Wilbur, D., Collins, L., Colgan, T.: Review of the current state of whole slide imaging in pathology. J. Pathol. Inf. 2(1), 36 (2011). https://doi.org/10.4103/2153-3539.83746

    Article  Google Scholar 

  15. Pichat, J., Iglesias, J.E., Yousry, T., Ourselin, S., Modat, M.: A survey of methods for 3D histology reconstruction. Med. Image Anal. 46, 73–105 (2018). https://doi.org/10.1016/j.media.2018.02.004

    Article  Google Scholar 

  16. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Grap. Appl. 21(5), 34–41 (2001). https://doi.org/10.1109/38.946629

    Article  Google Scholar 

  17. Roberts, N., Magee, D., Song, Y., Brabazon, K., Shires, M., Crellin, D., Orsi, N.M., Quirke, R., Quirke, P., Treanor, D.: Toward routine use of 3D histopathology as a research tool. Am. J. Pathol. 180(5), 1835–1842 (2012). https://doi.org/10.1016/j.ajpath.2012.01.033

    Article  Google Scholar 

  18. Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)

    Google Scholar 

  19. Song, Y., Treanor, D., Bulpitt, A., Magee, D.: 3D reconstruction of multiple stained histology images. J. Pathol. Inf. 4(2), 7 (2013). https://doi.org/10.4103/2153-3539.109864

    Article  Google Scholar 

  20. Song, Y., Treanor, D., Bulpitt, A.J., Wijayathunga, N., Roberts, N., Wilcox, R., Magee, D.R.: Unsupervised content classification based nonrigid registration of differently stained histology images. IEEE Trans. Biomed. Eng. 61(1), 96–108 (2014). https://doi.org/10.1109/TBME.2013.2277777

    Article  Google Scholar 

  21. Travis, W.D., Brambilla, E., Nicholson, A.G., Yatabe, Y., Austin, J.H., Beasley, M.B., Chirieac, L.R., Dacic, S., Duhig, E., Flieder, D.B., Geisinger, K., Hirsch, F.R., Ishikawa, Y., Kerr, K.M., Noguchi, M., Pelosi, G., Powell, C.A., Tsao, M.S., Wistuba, I.: The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J. Thor. Oncol. 10(9), 1243–1260 (2015). https://doi.org/10.1097/JTO.0000000000000630

    Article  Google Scholar 

  22. Walts, A.E., Marchevsky, A.M.: Current evidence does not warrant frozen section evaluation for the presence of tumor spread through alveolar spaces. Arch. Pathol. Lab. Med. 142(1), 59–63 (2018). https://doi.org/10.5858/arpa.2016-0635-OA

    Article  Google Scholar 

  23. Warth, A.: Spread through air spaces (STAS): a comprehensive update. Transl. Lung Cancer Res. 6(5), 501 (2017)

    Article  Google Scholar 

  24. Xu, Y., Pickering, J.G., Nong, Z., Ward, A.D.: 3D morphological measurement of whole slide histological vasculature reconstructions. In: Gurcan, M.N., Madabhushi, A. (eds.) Medical Imaging 2016: Digital Pathology, vol. 9791, pp. 181–187. International Society for Optics and Photonics, SPIE (2016). https://doi.org/10.1117/12.2214871

  25. Yagi, Y., Aly, R.G., Tabata, K., Barlas, A., Rekhtman, N., Eguchi, T., Montecalvo, J., Hameed, M., Manova-Todorova, K., Adusumilli, P.S., Travis, W.D.: Three-dimensional histologic, immunohistochemical and multiplex immunofluorescence analysis of dynamic vessel co-option of spread through air spaces (STAS) in lung adenocarcinoma. J. Thor. Oncol. (2019). https://doi.org/10.1016/j.jtho.2019.12.112

    Article  Google Scholar 

  26. Yagi, Y., Tabata, K., Rekhtman, N., Eguchi, T., Fu, X., Montecalvo, J., Adusumilli, P., Hameed, M., Travis, W.: Three-dimensional assessment of spread through air spaces in lung adenocarcinoma: insights and implications. J. Thor. Oncol. 12(11), S1797 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by in part by the Precision Health Grant at C-S and seed grants from the Department of Surgery at Cedars-Sinai Medical Center. The authors would like to thank Dr. Mari Mino-Kenudson from the Massachusetts General Hospital for her help in data preparation and input on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartłomiej Pyciński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pyciński, B., Yagi, Y., Walts, A.E., Gertych, A. (2021). 3-D Tissue Image Reconstruction from Digitized Serial Histologic Sections to Visualize Small Tumor Nests in Lung Adenocarcinomas. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. Advances in Intelligent Systems and Computing, vol 1186. Springer, Cham. https://doi.org/10.1007/978-3-030-49666-1_5

Download citation

Publish with us

Policies and ethics