Skip to main content

Analysis of Tire Temperature Influence on Vehicle Dynamic Behaviour Using a 15 DOF Lumped-Parameter Full-Car Model

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2020)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 84))

Included in the following conference series:

Abstract

The vehicle dynamic behaviour analysis is a crucial step for the evaluation of performance in terms of stability and safety. Tires play an important role by generating the interaction forces at each road-tire contact patch. The longitudinal and lateral dynamics are analysed by using instrumented vehicles with expensive high precision sensors to get a measurement of estimates of physical parameters of interest. This paper deals with the evaluation of vehicle under/oversteering behaviour and of braking performance using a Real-time (RT) simulator. The simulations were performed by using an efficient 15 Degrees of Freedoms (DOFs) Lumped-Parameter Full Vehicle Model (LPFVM), comprising a tire model with temperature-dependent properties. A virtual Driver-in-the-Loop (vDiL) scheme was used to perform test manouvers. The virtual driver is based on two PID regulators for speed and steering control. Finally, this paper reports the results of constant radius tests as defined by standard ISO4138 and of a braking manoeuvre. In both tests, a type-A road profile as defined by ISO 8608 standard was simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ragesh, N.K., Rajesh, R.: Pedestrian detection in automotive safety: understanding state-of-the-art. IEEE Access 7, 47864–47890 (2019)

    Article  Google Scholar 

  2. Bengler, K., Dietmayer, K., Farber, B., et al.: Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag. 6(4), 6–22 (2014)

    Article  Google Scholar 

  3. Stark, L., Düring, M., Schoenawa, S., et al.: Quantifying Vision Zero: crash avoidance in rural and motorway accident scenarios by combination of ACC, AEB, and LKS projected to German accident occurrence. Traffic Inj. Prev. 20(sup1), 126–132 (2019)

    Article  Google Scholar 

  4. Kukkala, V.K., Tunnell, J., Pasricha, S., Bradley, T.: Advanced driver-assistance systems: a path toward autonomous vehicles. IEEE Consum. Electron. Mag. 7(5), 18–25 (2018)

    Article  Google Scholar 

  5. Edunyah, I.: Causes of tyre failure on road traffic accident; a case study of Takoradi Township. Int. J. Sci. Res. Publ. 6(2), 30–35 (2016)

    Google Scholar 

  6. Osueke, C.O., Uguru-Okorie, D.C.: The role of tire in car crash, its causes, and prevention. Int. J. Emerg. Technol. Adv. Eng. 2(02), 54–57 (2012)

    Google Scholar 

  7. Candreva, S., Mundo, D., Gubitosa, M., Toso, A.: On the correlation between a 3D high-fidelity multi-body vehicle model and a 1D 15-DOFs vehicle concept model. In: Proceedings of ISMA 2014, pp. 1615–1627 (2014)

    Google Scholar 

  8. Sharifzadeh, M., Timpone, F., Senatore, A., et al.: Real time tyre forces estimation for advanced vehicle control. Int. J. Mech. Control 18(2), 77–84 (2017)

    Google Scholar 

  9. Jahnke, M.D., Cosco, F., Novickis, R., et al.: Efficient neural network implementations on parallel embedded platforms applied to real-time torque-vectoring optimization using predictions for multi-motor electric vehicles. Electron 8(2), 1–27 (2019)

    Google Scholar 

  10. Cosco, F., Naets, F., Desmet, W.: Use of concept modelling for online input force estimation. In: Proceedings of ISMA 2014, pp. 1639–1651 (2014)

    Google Scholar 

  11. Carpinelli, M., Gubitosa, M., Mundo, D., Desmet, W.: Automated independent coordinates’ switching for the solution of stiff DAEs with the linearly implicit Euler method. Multibody Syst. Dyn. 36, 67–85 (2016)

    Article  MathSciNet  Google Scholar 

  12. Mundo, D., Gencarelli, R., Dramisino, L., Garre, C.: Development, validation and RT performance assessment of a platform for driver-in-the-loop simulation of vehicle dynamics. In: Mechanisms and Machine Science, pp. 130–138 (2018)

    Google Scholar 

  13. Perrelli, M., Francesco, C., Giuseppe, C., Mundo, D.: Evaluation of vehicle lateral dynamic behaviour according to ISO-4138 tests by implementing a 15-DOF vehicle model and an autonomous virtual driver. Int. J. Mech. Control 20(2), 31–38 (2019)

    Google Scholar 

  14. Loprencipe, G., Zoccali, P.: Use of generated artificial road profiles in road roughness evaluation. J. Mod. Transp. 25, 24–33 (2017)

    Article  Google Scholar 

  15. Pacejka, H.B.: Tire and Vehicle Dynamics. Butterworth-Heinemann, Oxford (2006)

    Google Scholar 

  16. Farroni, F., Lamberti, R., Mancinelli, N., Timpone, F.: TRIP-ID: a tool for a smart and interactive identification of Magic Formula tyre model parameters from experimental data acquired on track or test rig. Mech. Syst. Signal Process. 102, 1–22 (2018)

    Article  Google Scholar 

  17. Farroni, F., Russo, M., Sakhnevych, A., Timpone, F.: TRT EVO: advances in real-time thermodynamic tire modeling for vehicle dynamics simulations. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 233(1), 121–135 (2019)

    Article  Google Scholar 

  18. Farroni, F., Sakhnevych, A., Timpone, F.: A three-dimensional multibody tire model for research comfort and handling analysis as a structural framework for a multi-physical integrated system. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 233(1), 136–146 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the project “FASTire (Foam Airless Spoked Tire): Smart Airless Tyres for Extremely-Low Rolling Resistance and Superior Passengers Comfort” funded by the Italian MIUR “Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) call 2017 - grant 2017948FEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Perrelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perrelli, M., Farroni, F., Timpone, F., Mundo, D. (2020). Analysis of Tire Temperature Influence on Vehicle Dynamic Behaviour Using a 15 DOF Lumped-Parameter Full-Car Model. In: Zeghloul, S., Laribi, M., Sandoval Arevalo, J. (eds) Advances in Service and Industrial Robotics. RAAD 2020. Mechanisms and Machine Science, vol 84. Springer, Cham. https://doi.org/10.1007/978-3-030-48989-2_29

Download citation

Publish with us

Policies and ethics