Skip to main content

Inspection of Ceramic Materials

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Nondestructive Evaluation 4.0

Abstract

Ceramic materials represent a special challenge for nondestructive component testing. They differ significantly in composition, material properties, defect types, defect sizes, the manufacturing process, as well as in geometric properties from metals, which are more often tested with nondestructive methods.

Some methods of nondestructive testing have been established for ceramic components for many years. These include visual inspection and dye penetrant testing, but also acoustic resonance testing, X-ray testing, and in some special cases ultrasonic testing. In addition, a number of new methods are currently being developed which can partially eliminate the disadvantages of existing technologies. These new methods include special acoustic methods, infrared transmission, optical coherence tomography, high-frequency eddy current technique, active thermography, microwave technique, and laser speckle photometry. All the methods mentioned above are examined and discussed in detail.

This article was created during Susanne Hillmann was employed at the Fraunhofer IKTS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Beuth. Hochleistungskeramik – Prüfverfahren für monolithische Werkstoffe und ausgewählte Prüfnormen für Pulver, DIN Taschenbuch 470, Herausgeber: DIN Deutsches Institut für Normung e.V.

    Google Scholar 

  2. DIN EN 60672-2. Keramik- und Glasisolierstoffe - Teil 2: Prüfverfahren.

    Google Scholar 

  3. ASTM-C-1175a. Standard Guide to Test Methods and Standards for Nondestructive Testing of Advanced Ceramics; Internationale Norm, ASTM International, United States.

    Google Scholar 

  4. Walle G, Sklarczik C, Müller T, Netzelmann U. Prüfung von grüner Sanitärkeramik als Mittel zur Ressourceneffizienz. DGZFP Jahrestagung. 2014, Mi.3.B.4:1–10.

    Google Scholar 

  5. Krell A, Hutzler T, Klimke J. Transmission physics and consequences for materials selection, manufacturing, and applications. J Eur Ceram Soc. 2009;29:207–21.

    Article  CAS  Google Scholar 

  6. Su R, Kirillin M, Chang EW, Sergeeva E, Yun SH, Mattson L. Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics. Opt Express. 2014;22(13):15804–19. https://doi.org/10.1364/OE.22.015804.

    Article  Google Scholar 

  7. Opitz J, Wunderlich C, Bendjus B, et al. Materialdiagnose und integrale Prüfverfahren für keramische Bauteile. Keram Z. 2016;68:249–54.

    Article  Google Scholar 

  8. Heuer H, Schulze M, Pooch M, Gäbler S, Nocke A, Bardl G, Cherif C, Klein M, Kupke R, Vetter R, Lenz F, Kliem M, Bülow C, Goyvaerts J, Mayer T, Petrenz S. Review on quality assurance along the CFRP value chain – non-destructive testing of fabrics, preforms and CFRP by HF radio wave techniques. Compos Part B. 2015;77:494–501.

    Article  CAS  Google Scholar 

  9. Gäbler S, Heuer H, Heinrich G. Measuring and imaging permittivity of insulators using high-frequency eddy-current devices. IEEE Trans Instrum Meas. 2015;64(8):2227–38.

    Article  Google Scholar 

  10. Ringermacher HI. Surfing the electromagnetic spectrum. WCNDT 2012.

    Google Scholar 

  11. Hinken JH. Mikrowellenbasierte Zerstörungsfreie Prüfung. Fachbeitrag ZfP-Zeitung. 2007;104:37–42.

    Google Scholar 

  12. Schubert F, Barth M, Hipp R, Köhler B. Acoustic microscopy. In: Nathan Ida, Norbert Meyendorf (eds), Handbook of advanced non-destructive evaluation; 2018. Springer International Publishing, p. 1–40. ISBN: 978-3-319-26552-0

    Google Scholar 

  13. Briggs A, Briggs GAD, Kolosov O. Acoustic microscopy, vol. 67: Oxford University Press, Oxford; 2010. ISBN 0199232733, 9780199232734

    Google Scholar 

  14. Oishi M. Nondestructive evaluation of materials with the scanning laser acoustic microscope. IEEE Electr Insul Mag. 1991;7:25–30.

    Article  Google Scholar 

  15. Bueno S, Hernandez M, Sanchez T, Anaya J, Baudin C. Non-destructive characterisation of alumina/aluminium titanate composites using a micromechanical model and ultrasonic determinations: Part I. Evaluation of the effective elastic constants of aluminium titanate. Ceram Int. 2008;34:181–18. Elsevier

    Article  CAS  Google Scholar 

  16. Kurama S, Elif E. Characterization of mechanical properties of porcelain tile using ultrasonics. Gazi Univ J Sci. 2012;25:761–8.

    Google Scholar 

  17. Kulokas M, Kazys R, Mazeika L. Non-destructive evaluation of green ceramic body density by ultrasonic technique. Elektronika ir Elektrotechnika. 2011;111:71–6.

    Article  Google Scholar 

  18. ASTM-C-1331. Standard Test Method for Measuring Ultrasonic Velocity in Advanced Ceramics with Broadband Pulse-Echo Cross-Correlation Method; Internationale Norm, ASTM International, United States.

    Google Scholar 

  19. ASTM-C-1332. Standard Test Method for Measurement of Ultrasonic Attenuation Coefficients of Advanced Ceramics by Pulse-Echo Contact Technique; Internationale Norm, ASTM International, United States.

    Google Scholar 

  20. Barth M, Köhler B, Bamberg J, Baron H-U. Hochauflösendes Ultraschallgoniometer zur Bestimmung von Oberflächen-Verfestigungszuständen an Nickelbasis- und Titan-Legierungen, DGZfP-Jahrestagung 2011 - Mi.4.A.3.

    Google Scholar 

  21. Coffey E. Acoustic resonance testing, 2012 future of instrumentation international workshop (fiiw) proceedings, October 2012, pp. 1–2 Identifier, ISBN: 9781467324830. https://doi.org/10.1109/FIIW.2012.6378332

  22. Barth M; Duckhorn F; Tschöke K; Tschöpe C, Köhler B Testing of ceramics by ultrasound microscopy and vibration analysis proceedings of the 19th world conference on non-destructive testing, 2016, 1–9. Contribution: werf3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Hillmann .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hillmann, S., Köhler, B. (2021). Inspection of Ceramic Materials. In: Meyendorf, N., Ida, N., Singh, R., Vrana, J. (eds) Handbook of Nondestructive Evaluation 4.0. Springer, Cham. https://doi.org/10.1007/978-3-030-48200-8_16-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48200-8_16-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48200-8

  • Online ISBN: 978-3-030-48200-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Inspection of Ceramic Materials
    Published:
    20 July 2021

    DOI: https://doi.org/10.1007/978-3-030-48200-8_16-3

  2. Inspection of Ceramic Materials
    Published:
    18 May 2021

    DOI: https://doi.org/10.1007/978-3-030-48200-8_16-2

  3. Original

    Inspection of Ceramic Materials
    Published:
    21 April 2021

    DOI: https://doi.org/10.1007/978-3-030-48200-8_16-1