Skip to main content

Intuition, Understanding, and Proof: Tatiana Afanassjewa on Teaching and Learning Geometry

  • Chapter
  • First Online:
The Legacy of Tatjana Afanassjewa

Part of the book series: Women in the History of Philosophy and Sciences ((WHPS,volume 7))

  • 123 Accesses

Abstract

Tatiana Alexeyevna Afanassjewa (from 1904 Tatiana Ehrenfest-Afanassjewa) was a mathematician, a physicist, and a teacher. All three of these vocations come together in her philosophy of geometry, which bases a novel approach to the teaching of geometry on her understanding of the proper roles of intuition and logical reasoning in geometry, grounded in our experience of concrete objects occupying physical space. Having been a student at Göttingen during the time of its greatest flowering as a centre of mathematical research, and a member of the physics community during the revolutionary period from Einstein’s annus mirabilis of 1905, she was close to the centre of some of the most exciting developments in science of her time. Since early on she was also deeply invested in teaching, and in developing new and better ways to communicate her subject to her students. Afanassjewa’s reflections on the teaching of geometry are thus those of a mathematician and a theoretical physicist who was passionate about scientific discussion and teaching: her ideas originate in her own experience as a student, researcher, and teacher, and in the debates with her scientific contemporaries—debates in which she played an active and important role.

The writing of Sects. 2.12.3 of this paper was supported by funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 709265. The writing of Sects. 2.32.6 was supported by the German Research Foundation (Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)—Projektnummer 390218268). Their support is gratefully acknowledged. My thanks to Benedict Eastaugh and two anonymous referees for comments on a previous draft of this paper, and to Paolo Bussotti for helpful discussions about the history of geometry. I also thank the ETH Zurich University Archives for making available to me the correspondence between Tatiana Afanassjewa and Paul Bernays. The visit to the ETH Zurich University Archives was funded by LMUexcellent within the framework of the German Excellence Strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Unless otherwise noted, all page numbers given for the manifesto refer to the translation in the present volume, and all page numbers given for the Übungensammlung refer to the translation by Hoechsmann (2011).

  2. 2.

    In this context, it would also be interesting to analyse the similarities and the differences between Afanassjewa’s view and that of Ferdinand Gonseth. It is plausible to think that she was acquainted with Gonseth’s work, as he is mentioned in the correspondence between Afanassjewa and Bernays in the early 1950s. However, since the first philosophical work of Gonseth dates to 1926, 2 years after the publication of Afanassjewa’s manifesto, such an analysis is beyond the scope of this paper.

  3. 3.

    It is surprising that there is no correspondence between Klein and Afanassjewa, since Klein in particular was an avid correspondent (for an idea of the volume of Klein’s correspondence, see e.g. Schlimm 2013, p. 184). Neither the Göttingen University Library nor the Rijksmuseum Boerhaave, which holds the Ehrenfest–Afanassjewa archive, hold letters between her and other Göttingen mathematicians on topics related to her philosophy of geometry (though there is some correspondence with Klein about the encyclopaedia entry on the foundations of statistical mechanics which she authored together with her husband Paul Ehrenfest). The Kalliope Verbundkatalog Nachlässe only lists correspondence between Afanassjewa and the physicist Gustav Herglotz. There is, however, extant correspondence between Afanassjewa and Paul Bernays from the late 1940s and early 1950s, mostly about theoretical physics, which can be accessed in the Bernays Nachlass at the ETH Zurich University Archives. For a detailed list of courses of Klein’s that Afanassjewa attended while in Göttingen, see the recently published Tobies (2020).

  4. 4.

    More recent research in formalised geometry suggests that Hilbert’s axiomatic treatment in the Grundlagen still contained gaps that had to be filled by diagrammatic reasoning and geometrical intuition: see Meikle and Fleuriot (2003).

  5. 5.

    It should be noted that on Afanassjewa’s view, not only is knowledge of geometrical theorems not necessary for knowledge of spatial relations, it is also not sufficient. Her objections to the teaching of geometry by means of an axiomatic presentation of Euclidean geometry, and the relation of such a course to the development of spatial imagination, will be discussed below.

  6. 6.

    For an analysis of the role of intuition in Klein’s conception of geometry education, see Mattheis (2019) and Rowe (1985).

  7. 7.

    A sample exercise of this kind is the following: “What form does a surface of water have in a cylindrical glass held at different angles?” (Ehrenfest-Afanassjewa 1931, p. 32). Such an activity is clearly aimed at developing projective imagination. Even though Afanassjewa does not discuss it as explicitly as Klein, training this aspect of spatial imagination is nevertheless important in her view.

  8. 8.

    Afanassjewa was fascinated by the discovery of non-Euclidean geometries, their respective axiom systems and associated models, which she saw as a possible subject of study in high school.

  9. 9.

    For a brief history of the Wiskunde Werkgroep, see La Bastide-van Gemert (2015, pp. 30–32). See also Smid (2009); Furinghetti et al. (2013).

  10. 10.

    Ehrenfest-Afanassjewa and Freudenthal (1951, p. 6). The English translation of this passage is drawn from La Bastide-van Gemert (2015, pp. 136–137).

  11. 11.

    Ehrenfest-Afanassjewa and Freudenthal (1951, p. 16). The English translation of this passage is drawn from La Bastide-van Gemert (2015, p. 137).

References

  • Arana, A. (2016). Imagination in mathematics. In A. Kind (Ed.), The Routledge handbook of philosophy of imagination (pp. 463–477). Routledge.

    Google Scholar 

  • Bussi, M. G. B., Taimina, D., & Isoda, M. (2010). Concrete models and dynamic instruments as early technology tools in classrooms at the dawn of ICMI: From Felix Klein to present applications in mathematics classrooms in different parts of the world. ZDM, 42(1), 19–31. https://doi.org/10.1007/s11858-009-0220-6.

  • Boi, L., Flament, D., & Salanskis, J. M. (Eds.) (1992). 1830–1930: A century of geometry: Epistemology, history and mathematics. Number 402 in lecture notes in physics. Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-55408-4.

  • Born, M., & Born, H. (1969). In A. Hermann (Ed.), Der Luxus des Gewissens: Erlebnisse und Einsichten im Atomzeitalter. Nymphenburger Verlag, Munich.

    Google Scholar 

  • Chislenko, E., & Tschinkel, Y. (2007). The Felix Klein Protocols. Notices of the American Mathematical Society, 54(8), 960–970. https://www.ams.org/journals/notices/200708/200708FullIssue.pdf.

  • Corry, L., & Hilbert, D. (1999). Geometry and physics: 1900–1915. In J. J. Gray (Ed.), The symbolic universe: Geometry and physics (1890–1930) (pp. 145–188). Oxford: Oxford University Press.

    Google Scholar 

  • De Moor, E. (1993). Het “gelijk” van Tatiana Ehrenfest-Afanassjewa. Nieuwe Wiskrant, 12(4), 15–24.

    Google Scholar 

  • de Moor, E. (1996). Het ongenoegen van Dijksterhuis. Nieuwe Wiskrant, 15(4), 22–26.

    Google Scholar 

  • Dedekind, R. (1872). Stetigkeit und irrationale Zahlen. Vieweg, English translation in Dedekind (1901).

    Google Scholar 

  • Dedekind, R. (1888). Was sind und was sollen die Zahlen? Vieweg, English translation in Dedekind (1901).

    Google Scholar 

  • Dedekind, R. (1901). In W. W. Beman (Ed.), Essays on the theory of numbers. Open Court, English translations of Dedekind (1872) and Dedekind (1888).

    Google Scholar 

  • Dijksterhuis, E. J. (1924a). Moet het Meetkunde-onderwijs gewijzigd worden? Opmerkingen naar aanleiding van een brochure van Mevr. Ehrenfest-Afanassjewa. Bijvoegsel van het Nieuw Tijdschrift voor Wiskunde, 1(1), 1–26. https://archief.vakbladeuclides.nl/bestanden/001_1924-25_01.pdf.

  • Dijksterhuis, E. J. (1924b). Antwoord aan mevrouw Ehrenfest-Afanassjewa. Bijvoegsel van het Nieuw Tijdschrift voor Wiskunde, 1(2), 60–68. https://archief.vakbladeuclides.nl/bestanden/001_1924-25_02.pdf.

  • Ehrenfest-Afanassjewa, T. (1924a). Wat kan en moet het Meetkunde-onderwijs aan een niet-wiskundige geven? Paedagogiese Voordrachten. J.B. Wolters, Groningen and the Hague, English translation in this volume by P. A. van Wierst.

    Google Scholar 

  • Ehrenfest-Afanassjewa, T. (1924b). Moet het meetkundeonderwijs gewijzigd worden? Bijvoegsel van het Nieuw Tijdschrift voor Wiskunde, 1(2), 47–59. https://archief.vakbladeuclides.nl/bestanden/001_1924-25_02.pdf.

  • Ehrenfest-Afanassjewa, T. (1931). Uebungensammlung zu einer geometrischen Propädeuse. The Hague: Martinus Nijhoff, English translation by Hoechsmann (2011).

    Google Scholar 

  • Ehrenfest-Afanassjewa, T., & Freudenthal, H. (1951). Kan het wiskundeonderwijs tot de opvoeding van het denkvermogen bijdragen? Purmerend.

    Google Scholar 

  • José Ferreirós, J. (2007). Labyrinth of thought: A history of set theory and its role in modern mathematics (2nd ed.). Birkhäuser.

    Google Scholar 

  • Furinghetti, F., Matos, J. M., & Menghini, M. (2013). From mathematics and education, to mathematics education. In M. A. (Ken) Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung, (Eds.), Third international handbook of mathematics education (Vol. 27, pp. 273–302). Springer international handbooks of education. New York: Springer. https://doi.org/10.1007/978-1-4614-4684-2.

  • Giaquinto, M. (2002). The search for certainty: A philosophical account of the foundations of mathematics. Oxford: Oxford University Press.

    Google Scholar 

  • Glas, E. (2002). Klein’s model of mathematical creativity. Science & Education, 11(1), 95–104. https://doi.org/10.1023/A:1013075819948.

  • Grattan-Guinness, I. (2000). The search for mathematical roots, 1870–1940: Logics, set theories and the foundations of mathematics from cantor through Russell to Gödel. Princeton and Oxford: Princeton University Press.

    Google Scholar 

  • Gray, J. (2008). Plato’s Ghost: The modernist transformation of mathematics. Princeton and Oxford: Princeton University Press.

    Book  Google Scholar 

  • Gray, J. (2010). Worlds out of nothing: A course in the history of geometry in the 19th century. Springer undergraduate mathematics series. Berlin: Springer. https://doi.org/10.1007/978-0-85729-060-1.

  • Gray, J. (2019). Epistemology of geometry. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University, fall 2019 edition.

    Google Scholar 

  • Gray, J. J. (1992). Poincaré and Klein—groups and geometries. In Boi et al. (Eds.) (1992, pp. 35–44). https://doi.org/10.1007/3-540-55408-4_51.

  • Hallett, M., & Majer, U. (Eds.). (2004). David Hilbert’s lectures on the foundations of geometry 1891–1902. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Heinzmann, G. (2013). L’Intuition Épistémique. Vrin.

    Google Scholar 

  • Heinzmann, G., & Stump, D. (2017). Henri Poincaré. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. Metaphysics Research Lab, Stanford University, winter 2017 edition.

    Google Scholar 

  • Hilbert, D. (1899). Grundlagen der Geometrie. In B. G. Teubner, Leipzig (Eds.), The foundations of geometry (2004, pp. 436–525). Reprinted in Hallett and Majer (2004, pp. 436–525). Translated into English as The Foundations of Geometry, Open Court, Chicago, 1902.

    Google Scholar 

  • Hoechsmann, K. (2011). Revisiting Tatjana Ehrenfest-Afanassjewa’s (1931) “Uebungensammlung zu einer geometrischen Propädeuse”: A translation and interpretation. The Montana Mathematics Enthusiast, 8(1), 113–146. https://scholarworks.umt.edu/tme/vol8/iss1/6.

  • Klein, F. (1872). “Vergleichende Betrachtungen ueber neuere geometrische Forschungen”, Programm zu Eintritt in die philosophische Fakultät und den Senat der K. Friedrich-Alexanders-Universität zu Erlangen. Erlangen: Deichert.

    Google Scholar 

  • Klein, F. (1893). On the mathematical character of space-intuition and the relation of pure mathematics to the applied sciences. In R. Fricke, & H. Vermeil (Eds.), Gesammelte mathematische Abhandlungen, Anschauliche Geometrie Substitutionsgruppen und Gleichungstheorie zur Mathematischen Physik (Vol. II, pp. 225–231). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Klein, F. (2016). Elementary mathematics from a higher standpoint (Vol. II). Geometry. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-49445-5. English translation by Gert Schubring.

  • La Bastide-van Gemert, S. (2015). All positive action starts with criticism: Hans Freudenthal and the didactics of mathematics. Springer. Translation from the Dutch language edition “Elke positieve actie begint met critiek”: Hans Freudenthal en de didactiek van de wiskunde, by Sacha La Bastide-van Gemert (2006). Hilversum: Verloren.

    Google Scholar 

  • Mattheis, M. (2019). Aspects of “Anschauung” in the work of Felix Klein. In Weigand et al. (Eds.), (2019, pp. 93–106). https://doi.org/10.1007/978-3-319-99386-7_7.

  • Meikle, L. I., & Fleuriot, J. D. (2003). Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In D. Basin, & B. Wolff (Eds.), Theorem proving in higher order logics (pp. 319–334). Berlin, Heidelberg: Springer. https://doi.org/10.1007/10930755_21.

  • Nabonnand, P. (2007). Les réformes de l’enseignement des mathématiques au début du XXe siécle. Une dynamique à l’échelle international. In H. Gispert, N. Hulin, & C. Robic (Eds.), Sciences et enseignement. L’exemple de la grande réforme des programmes du lycée au début du XXe siècle (pp. 293–314). Vuibert. https://hal.archives-ouvertes.fr/hal-01083143.

  • Pasch, M. (1882). Vorlesungen über neuere geometrie. Leipzig: B.G. Teubner.

    Google Scholar 

  • Poincaré, H. (1902). La science et L’Hypothèse. Flammarion, English translation in English translation in Poincaré (1913).

    Google Scholar 

  • Poincaré, H. (1905). Le Valeur de la science. Flammarion, English translation in Poincaré (1913).

    Google Scholar 

  • Poincaré, H. (1908). Science et methode. Flammarion, English translation in Poincaré (1913).

    Google Scholar 

  • Poincaré, H. (1913). The foundations of science: Science and hypothesis, the value of science, science and method (Vol. 1), Science and education. The Science Press, English translation by G. B. Halstead of Poincaré (1902), (1905), (1908).

    Google Scholar 

  • Poincaré, H. (1958). The value of science. Dover, Republication of the English translation by G. B. Halstead of Poincaré (1905)

    Google Scholar 

  • Rowe, D. E. (1983). A forgotten chapter in the history of Felix Klein’s Erlanger Programm. Historia Mathematica, 10(4), 448–454. https://doi.org/10.1016/0315-0860(83)90006-X.

    Article  Google Scholar 

  • Rowe, D. E. (1985). Felix Klein’s “Erlanger Antrittsrede”: A transcription with English translation and commentary. Historia Mathematica, 12(2), 123–141. https://doi.org/10.1016/0315-0860(85)90003-5.

  • Rowe, D. E. (1989). Klein, Hilbert, and the Göttingen mathematical tradition. Osiris, 5, 186–213. https://doi.org/10.2307/301797.

    Article  Google Scholar 

  • Rowe, D. E. (1992). Klein, Lie, and the “Erlanger Programm”. In Boi et al. (Eds.) (1992, pp. 45–54). https://doi.org/10.1007/3-540-55408-4_52.

  • Rowe, D. E. (1994). The philosophical views of Klein and Hilbert. In Chikara, S., Mitsuo, S., & Dauben, J. W. (Eds.), The intersection of history and mathematics (Vol. 15, pp. 187–202), Science Networks \(\cdot \) Historical studies. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-7521-9_13.

  • Rowe, D. E. (2013). Mathematical models as artefacts for research: Felix Klein and the case of Kummer surfaces. Mathematische Semesterberichte, 60(1), 1–24. https://doi.org/10.1007/s00591-013-0119-8.

  • Schlimm, D. (2010). Pasch’s philosophy of mathematics. The Review of Symbolic Logic, 3(1), 93–118. https://doi.org/10.1017/S1755020309990311.

    Article  Google Scholar 

  • Schlimm, D. (2013). The correspondence between Moritz Pasch and Felix Klein. Historia Mathematica, 40(2), 183–202. https://doi.org/10.1016/j.hm.2013.02.001.

    Article  Google Scholar 

  • Sinaçeur, H. (1993). Du formalisme à la constructivité: Le finitisme. Revue Internationale de Philosophie, 47 186(4), 51–283.

    Google Scholar 

  • Smid, H. J. (2009). Foreign influences on Dutch mathematics teaching. In K. Bjarnadóttir, F. Furinghetti, & G. Schubring (Eds.), “Dig where you stand”. Proceedings of the conference on on-going research in the history of mathematics education (pp. 209–222), Reykjavik: University of Iceland, School of Education.

    Google Scholar 

  • Smid, H. J. (2012). The first international reform movement and its failure in the Netherlands. In K. Bjarnadóttir, F. Furinghetti, J. Manuel Matos, & G. Schubring (Eds.), “Dig where you stand” 2. Proceedings of the second “International conference on the history of mathematics education”, October 2–5, 2011, New University of Lisbon, Portugal (pp. 463–476). UIED, Unidade de Investigação, Educação e Desenvolvimento, Lisbon.

    Google Scholar 

  • Smid, H. J. (2016). Formative years: Hans Freudenthal in prewar Amsterdam. In History and pedagogy of mathematics. France: Montpellier. https://hal.archives-ouvertes.fr/hal-01349232.

  • Tobies, R. (2000). In spite of male culture: Women in mathematics. In R. Camina, & L. Fajstrup (Eds.), European women in mathematics. Proceedings of the ninth general meeting, Loccum, Germany, 30 August–4 September 1999 (pp. 25–35). Hindawi. http://downloads.hindawi.com/books/9789775945020.pdf.

  • Tobies, R. (2012). The developent of Göttingen into the Prussian centre of mathematics and the exact sciences. In N. A. Rupke (Ed.), Göttingen and the development of the natural sciences. Wallstein.

    Google Scholar 

  • Tobies, R. (2019). Felix Klein–Mathematician, academic organizer, educational reformer. In Weigand et al. (Eds.) (2019, pp. 5–21). https://doi.org/10.1007/978-3-319-99386-7.

  • Tobies, R. (2020). Internationality: Women in Felix Kleins Courses at the University of Gottingen (1893–1920). In E. Kaufholz-Soldat & N.M.R. Oswald (Eds.), Against All Odds: Womens Ways to Mathematical Research Since 1800 (2020, 9–38). Cham: Springer.

    Google Scholar 

  • Torretti, R. (1978). Philosophy of geometry from Riemann to Poincaré. Dordrecht: D. Reidel.

    Google Scholar 

  • van Hiele, P. .M. (1975). Freudenthal en de didaktiek der wiskunde. Euclides, 51(1): 8–10. https://archief.vakbladeuclides.nl/bestanden/051_1975-76_01.pdf.

  • Weigand, H. G., McCallum, W., Menghini, M., Neubrand, M., & Schubring, G. (Eds.) (2019). The legacy of Felix Klein. ICME-13 Monographs. Springer, Cham. https://doi.org/10.1007/978-3-319-99386-7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Antonutti Marfori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonutti Marfori, M. (2021). Intuition, Understanding, and Proof: Tatiana Afanassjewa on Teaching and Learning Geometry. In: Uffink, J., Valente, G., Werndl, C., Zuchowski, L. (eds) The Legacy of Tatjana Afanassjewa. Women in the History of Philosophy and Sciences, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-47971-8_2

Download citation

Publish with us

Policies and ethics