Skip to main content

Antioxidant and Pro-oxidant Activities of Carotenoids

  • Living reference work entry
  • First Online:
Plant Antioxidants and Health

Abstract

Carotenoids are plant pigments widely spread in nature, especially in fruits and vegetables. These compounds have been subject of scientific research due to their several biological activities. Attention has been devoted to their role as antioxidants and/or pro-oxidants. If in one hand carotenoids are postulated to reduce the risk and prevent the development of several diseases associated with oxidative stress, including cancer, cardiovascular, and chronic diseases. On the other hand, due to their potential pro-oxidant action, carotenoids may enhance harmful effects and oxidative damage to biomolecules, like DNA, proteins, and membranes. This chapter provides a general overview of carotenoids and their mechanisms of action, both as anti- and/or pro-oxidants, as evaluated in in vitro non-cellular and cellular models as well as in in vivo systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABTS•+:

2,2′-Azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)

APPH:

2,2′-Azobis (2-methylpropionamidine)dihydrochloride

BCMO1:

β-Carotene-15,15′-monooxygenase

BCO2:

β-Carotene-9′,10′-oxigenase 2

CD36:

Cluster determinant 36

DCFH-DA:

2′,7′-Dichlorofluorescein diacetate

DHR 123:

Dihydrorhodamine 123

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

FRAP:

Ferric reducing antioxidant power

GPx:

Glutathione peroxidase

GSH:

Glutathione

GST:

Glutathione S-transferase

IDL:

Intermediate-density lipoprotein

LDL:

Low-density lipoprotein

MDA :

Malondialdehyde

ORAC:

Oxygen-radical absorbance capacity

ORAC-L:

Oxygen radical absorbing capacity for lipophilic compounds

PCL:

Photochemiluminescence

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SCARB1:

Scavenger receptor class B member 1

SOD:

Superoxide dismutase

VLDL:

Very low-density lipoprotein

References

  1. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55(3):207–216

    Article  CAS  PubMed  Google Scholar 

  2. Milani A, Basirnejad M, Shahbazi S, Bolhassani A (2017) Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol 174(11):1290–1324

    Article  CAS  PubMed  Google Scholar 

  3. Nagao A (2014) Bioavailability of dietary carotenoids: intestinal absorption and metabolism. Jpn Agric Res Q 48(4):385–391

    Article  Google Scholar 

  4. Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28(4):663–692

    Article  CAS  PubMed  Google Scholar 

  5. Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6(2):466–488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. El-Agamey A, Lowe GM, McGarvey DJ, Mortensen A, Phillip DM, Truscott TG, Young AJ (2004) Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys 430(1):37–48

    Article  CAS  PubMed  Google Scholar 

  7. Palozza P (1998) Prooxidant actions of carotenoids in biologic systems. Nutr Rev 56(9):257–265

    Article  CAS  PubMed  Google Scholar 

  8. Shete V, Quadro L (2013) Mammalian metabolism of β-carotene: gaps in knowledge. Nutrients 5(12):4849–4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ribeiro D, Freitas M, Silva AMS, Carvalho F, Fernandes E (2018) Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food Chem Toxicol 120:681–699

    Article  CAS  PubMed  Google Scholar 

  10. Siems W, Wiswedel I, Salerno C, Crifò C, Augustin W, Schild L, Langhans C-D, Sommerburg O (2005) β-carotene breakdown products may impair mitochondrial functions – potential side effects of high-dose β-carotene supplementation. J Nutr Biochem 16(7):385–397

    Article  CAS  PubMed  Google Scholar 

  11. Jomova K, Valko M (2013) Health protective effects of carotenoids and their interactions with other biological antioxidants. Eur J Med Chem 70:102–110

    Article  CAS  PubMed  Google Scholar 

  12. Namitha KK, Negi PS (2010) Chemistry and biotechnology of carotenoids. Crit Rev Food Sci Nutr 50(8):728–760

    Article  CAS  PubMed  Google Scholar 

  13. Pérez-Gálvez A, Viera I, Roca M (2020) Carotenoids and chlorophylls as antioxidants. Antioxidants 9(6):1

    Article  CAS  Google Scholar 

  14. Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385(1):20–27

    Article  CAS  PubMed  Google Scholar 

  15. Tapiero H, Townsend DM, Tew KD (2004) The role of carotenoids in the prevention of human pathologies. Biomed Pharmacother 58(2):100–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Esatbeyoglu T, Rimbach G (2017) Canthaxanthin: from molecule to function. Mol Nutr Food Res 61(6):1600469

    Google Scholar 

  17. Gammone MA, Riccioni G, D’Orazio N (2015) Marine carotenoids against oxidative stress: effects on human health. Mar Drugs 13(10):6226–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao D-Y, Katz NB (2002) Chemistry, distribution, and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med 227(10):845–851

    Article  CAS  Google Scholar 

  19. Priyadarshani AMB (2017) A review on factors influencing bioaccessibility and bioefficacy of carotenoids. Crit Rev Food Sci Nutr 57(8):1710–1717

    Article  CAS  PubMed  Google Scholar 

  20. Bohn T, Desmarchelier C, Dragsted LO, Nielsen CS, Stahl W, Rühl R, Keijer J, Borel P (2017) Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol Nutr Food Res 61(6):1600685

    Article  PubMed Central  CAS  Google Scholar 

  21. Wu L, Guo X, Wang W, Medeiros DM, Clarke SL, Lucas EA, Smith BJ, Lin D (2016) Molecular aspects of β, β-carotene-9′, 10′-oxygenase 2 in carotenoid metabolism and diseases. Exp Biol Med 241(17):1879–1887

    Article  CAS  Google Scholar 

  22. Burri BJ, La Frano MR, Zhu C (2016) Absorption, metabolism, and functions of β-cryptoxanthin. Nutr Rev 74(2):69–82

    Article  PubMed  PubMed Central  Google Scholar 

  23. Caris-Veyrat C, Schmid A, Carail M, Böhm V (2003) Cleavage products of lycopene produced by in vitro oxidations: characterization and mechanisms of formation. J Agric Food Chem 51(25):7318–7325

    Article  CAS  PubMed  Google Scholar 

  24. Burri BJ, Clifford AJ (2004) Carotenoid and retinoid metabolism: insights from isotope studies. Arch Biochem Biophys 430(1):110–119

    Article  CAS  PubMed  Google Scholar 

  25. Pisoschi AM, Pop A (2015) The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem 97:55–74

    Article  CAS  PubMed  Google Scholar 

  26. Stahl W, Sies H (1996) Lycopene: a biologically important carotenoid for humans? Arch Biochem Biophys 336(1):1–9

    Article  CAS  PubMed  Google Scholar 

  27. Black HS, Boehm F, Edge R, Truscott TG (2020) The benefits and risks of certain dietary carotenoids that exhibit both anti- and pro-oxidative mechanisms-a comprehensive review. Antioxidants 9(3):264

    Article  CAS  PubMed Central  Google Scholar 

  28. Nishino A, Maoka T, Yasui H (2016) Analysis of reaction products of astaxanthin and its acetate with reactive oxygen species using LC/PDA ESI-MS and ESR spectrometry. Tetrahedron Lett 57(18):1967–1970

    Article  CAS  Google Scholar 

  29. Yang C, Zhang L, Zhang H, Sun Q, Liu R, Li J, Wu L, Tsao R (2017) Rapid and efficient conversion of all-E-astaxanthin to 9Z- and 13Z-isomers and assessment of their stability and antioxidant activities. J Agric Food Chem 65(4):818–826

    Article  CAS  PubMed  Google Scholar 

  30. Raposo MFJ, de Morais AMMB, de Morais RMSC (2015) Carotenoids from marine microalgae: a valuable natural source for the prevention of chronic diseases. Mar Drugs 13(8):5128–5155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chintong S, Phatvej W, Rerk-Am U, Waiprib Y, Klaypradit W (2019) In vitro antioxidant, antityrosinase, and cytotoxic activities of astaxanthin from shrimp waste. Antioxidants 8(5):128

    Article  CAS  PubMed Central  Google Scholar 

  32. Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA (1996) Antioxidant activities of carotenes and xanthophylls. FEBS Lett 384(3):240–242

    Article  CAS  PubMed  Google Scholar 

  33. Inoue Y, Shimazawa M, Nagano R, Kuse Y, Takahashi K, Tsuruma K, Hayashi M, Ishibashi T, Maoka T, Hara H (2017) Astaxanthin analogs, adonixanthin and lycopene, activate Nrf2 to prevent light-induced photoreceptor degeneration. J Pharmacol Sci 134(3):147–157

    Article  CAS  PubMed  Google Scholar 

  34. Lin C-W, Yang C-M, Yang C-H (2020) Protective effect of astaxanthin on blue light light-emitting diode-induced retinal cell damage via free radical scavenging and activation of PI3K/Akt/Nrf2 pathway in 661W cell model. Mar Drugs 18(8):387

    Article  CAS  PubMed Central  Google Scholar 

  35. Hormozi M, Ghoreishi S, Baharvand P (2019) Astaxanthin induces apoptosis and increases activity of antioxidant enzymes in LS-180 cells. Artif Cells Nanomed Biotechnol 47(1): 891–895

    Article  CAS  PubMed  Google Scholar 

  36. Kumar A, Dhaliwal N, Dhaliwal J, Dharavath RN, Chopra K (2020) Astaxanthin attenuates oxidative stress and inflammatory responses in complete Freund-adjuvant-induced arthritis in rats. Pharmacol Rep 72(1):104–114

    Article  CAS  PubMed  Google Scholar 

  37. Cui G, Li L, Xu W, Wang M, Jiao D, Yao B, Xu K, Chen Y, Yang S, Long M, Li P, Guo Y (2020) Astaxanthin protects ochratoxin A-induced oxidative stress and apoptosis in the heart via the Nrf2 pathway. Oxidative Med Cell Longev 2020:7639109

    Article  Google Scholar 

  38. Li L, Chen Y, Jiao D, Yang S, Li L, Li P (2020) Protective effect of astaxanthin on ochratoxin A-induced kidney injury to mice by regulating oxidative stress-related NRF2/KEAP1 pathway. Molecules 25(6):1386

    Article  CAS  PubMed Central  Google Scholar 

  39. Li X, Matsumoto T, Takuwa M, Ali MSES, Hirabashi T, Kondo H, Fujino H (2020) Protective effects of astaxanthin supplementation against ultraviolet-induced photoaging in hairless mice. Biomedicine 8(2):18

    CAS  Google Scholar 

  40. Mordi RC, Walton JC (2016) Identification of products from canthaxanthin oxidation. Food Chem 197:836–840

    Article  CAS  PubMed  Google Scholar 

  41. Sen Gupta S, Ghosh M (2013) In vitro antioxidative evaluation of α- and β-carotene, isolated from crude palm oil. J Anal Methods Chem 2013:351671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Panasenko OM, Sharov VS, Briviba K, Sies H (2000) Interaction of peroxynitrite with carotenoids in human low density lipoproteins. Arch Biochem Biophys 373(1):302–305

    Article  CAS  PubMed  Google Scholar 

  43. Boon CS, McClements DJ, Weiss J, Decker EA (2010) Factors influencing the chemical stability of carotenoids in foods. Crit Rev Food Sci Nutr 50(6):515–532

    Article  CAS  PubMed  Google Scholar 

  44. Sommerburg O, Langhans C-D, Arnhold J, Leichsenring M, Salerno C, Crifò C, Hoffmann GF, Debatin K-M, Siems WG (2003) β-Carotene cleavage products after oxidation mediated by hypochlorous acid – a model for neutrophil-derived degradation. Free Radic Biol Med 35(11):1480–1490

    Article  CAS  PubMed  Google Scholar 

  45. Mueller L, Boehm V (2011) Antioxidant activity of β-carotene compounds in different in vitro assays. Molecules 16(2):1055–1069

    Article  PubMed  CAS  Google Scholar 

  46. Kikugawa K, Hiramoto K, Tomiyama S, Asano Y (1997) β-Carotene effectively scavenges toxic nitrogen oxides: nitrogen dioxide and peroxynitrous acid. FEBS Lett 404(2–3):175–178

    Article  CAS  PubMed  Google Scholar 

  47. Trevithick-Sutton CC, Foote CS, Collins M, Trevithick JR (2006) The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: a chemiluminescence and ESR study. Mol Vis 12:1127–1135

    CAS  PubMed  Google Scholar 

  48. Kennedy TA, Liebler DC (1992) Peroxyl radical scavenging by β-carotene in lipid bilayers. Effect of oxygen partial pressure. J Biol Chem 267(7):4658–4663

    Article  CAS  PubMed  Google Scholar 

  49. Everett SA, Dennis MF, Patel KB, Maddix S, Kundu SC, Willson RL (1996) Scavenging of nitrogen dioxide, thiyl, and sulfonyl free radicals by the nutritional antioxidant β-carotene. J Biol Chem 271(8):3988–3994

    Article  CAS  PubMed  Google Scholar 

  50. Chisté RC, Freitas M, Mercadante AZ, Fernandes E (2014) Carotenoids inhibit lipid peroxidation and hemoglobin oxidation, but not the depletion of glutathione induced by ROS in human erythrocytes. Life Sci 99(1):52–60

    Article  PubMed  CAS  Google Scholar 

  51. Ribeiro D, Sousa A, Nicola P, Ferreira de Oliveira JMP, Rufino AT, Silva M, Freitas M, Carvalho F, Fernandes E (2020) β-Carotene and its physiological metabolites: effects on oxidative status regulation and genotoxicity in in vitro models. Food Chem Toxicol 141:111392

    Article  CAS  PubMed  Google Scholar 

  52. Akkara PJ, Sabina EP (2020) Pre-treatment with beta carotene gives protection against nephrotoxicity induced by bromobenzene via modulation of antioxidant system, pro-inflammatory cytokines and pro-apoptotic factors. Appl Biochem Biotechnol 190(2):616–633

    Article  CAS  PubMed  Google Scholar 

  53. Quesada-Gómez JM, Santiago-Mora R, Durán-Prado M, Dorado G, Pereira-Caro G, Moreno-Rojas JM, Casado-Díaz A (2018) β-Cryptoxanthin inhibits angiogenesis in human umbilical vein endothelial cells through retinoic acid receptor. Mol Nutr Food Res 62(2):1700489

    Article  CAS  Google Scholar 

  54. Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, Miyashita K (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 55(21):8516–8522

    Article  CAS  PubMed  Google Scholar 

  55. Zhang H, Tang Y, Zhang Y, Zhang S, Qu J, Wang X, Kong R, Han C, Liu Z (2015) Fucoxanthin: a promising medicinal and nutritional ingredient. Evid Based Complementary Altern Med 2015:723515–723515

    Google Scholar 

  56. Peng J, Yuan J-P, Wu C-F, Wang J-H (2011) Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Mar Drugs 9(10):1806–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rajauria G, Foley B, Abu-Ghannam N (2017) Characterization of dietary fucoxanthin from Himanthalia elongata brown seaweed. Food Res Int 99:995–1001

    Article  CAS  PubMed  Google Scholar 

  58. Taira J, Sonamoto M, Uehara M (2017) Dual biological functions of a cytoprotective effect and apoptosis induction by bioavailable marine carotenoid fucoxanthinol through modulation of the Nrf2 activation in RAW264.7 macrophage cells. Mar Drugs 15(10):305

    Article  PubMed Central  CAS  Google Scholar 

  59. Zeng J, Zhang Y, Ruan J, Yang Z, Wang C, Hong Z, Zuo Z (2018) Protective effects of fucoxanthin and fucoxanthinol against tributyltin-induced oxidative stress in HepG2 cells. Environ Sci Pollut Res 25(6):5582–5589

    Article  CAS  Google Scholar 

  60. Zheng J, Tian X, Zhang W, Zheng P, Huang F, Ding G, Yang Z (2019) Protective effects of fucoxanthin against alcoholic liver injury by activation of Nrf2-mediated antioxidant defense and inhibition of TLR4-mediated inflammation. Mar Drugs 17(10):552

    Article  CAS  PubMed Central  Google Scholar 

  61. Yang C, Fischer M, Kirby C, Liu R, Zhu H, Zhang H, Chen Y, Sun Y, Zhang L, Tsao R (2018) Bioaccessibility, cellular uptake and transport of luteins and assessment of their antioxidant activities. Food Chem 249:66–76

    Article  CAS  PubMed  Google Scholar 

  62. Lakshminarayana R, Sathish UV, Dharmesh SM, Baskaran V (2010) Antioxidant and cytotoxic effect of oxidized lutein in human cervical carcinoma cells (HeLa). Food Chem Toxicol 48(7):1811–1816

    Article  CAS  PubMed  Google Scholar 

  63. Lakshminarayana R, Aruna G, Sathisha UV, Dharmesh SM, Baskaran V (2013) Structural elucidation of possible lutein oxidation products mediated through peroxyl radical inducer 2,2′-azobis (2-methylpropionamidine) dihydrochloride: antioxidant and cytotoxic influence of oxidized lutein in HeLa cells. Chem Biol Interact 203(2):448–455

    Article  CAS  PubMed  Google Scholar 

  64. Sindhu ER, Preethi KC, Kuttan R (2010) Antioxidant activity of carotenoid lutein in vitro and in vivo. Indian J Exp Biol 48(8):843–848

    CAS  PubMed  Google Scholar 

  65. El-Kholy AA, Elkablawy MA, El-Agamy DS (2017) Lutein mitigates cyclophosphamide induced lung and liver injury via NF-κB/MAPK dependent mechanism. Biomed Pharmacother 92:519–527

    Article  CAS  PubMed  Google Scholar 

  66. Li H, Huang C, Zhu J, Gao K, Fang J, Li H (2018) Lutein suppresses oxidative stress and inflammation by Nrf2 activation in an osteoporosis rat model. Med Sci Monit 24:5071–5075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turkler C, Kulhan NG, Ata N, Kiremitli T, Cimen FK, Suleyman H (2018) The ameliorative effect of lutein on ovarian ischemia-reperfusion injury in rats. Bratisl Lek Listy 119(11): 713–717

    CAS  PubMed  Google Scholar 

  68. Sies H, Stahl W (1998) Lycopene: antioxidant and biological effects and its bioavailability in the human. Proc Soc Exp Biol Med 218(2):121–124

    Article  CAS  PubMed  Google Scholar 

  69. Sun X, Jia H, Xu Q, Zhao C, Xu C (2019) Lycopene alleviates H2O2-induced oxidative stress, inflammation and apoptosis in bovine mammary epithelial cells via the NFE2L2 signaling pathway. Food Funct 10(10):6276–6285

    Article  CAS  PubMed  Google Scholar 

  70. Karaca A, Yilmaz S, Kaya E, Altun S (2019) The effect of lycopene on hepatotoxicity of aflatoxin B1 in rats. Arch Physiol Biochem 1–8. Online ahead of print

    Google Scholar 

  71. Xu F, Wang P, Yao Q, Shao B, Yu H, Yu K, Li Y (2019) Lycopene alleviates AFB1-induced immunosuppression by inhibiting oxidative stress and apoptosis in the spleen of mice. Food Funct 10(7):3868–3879

    Article  CAS  PubMed  Google Scholar 

  72. Abdel-Rahman HG, Abdelrazek HMA, Zeidan DW, Mohamed RM, Abdelazim AM (2018) Lycopene: hepatoprotective and antioxidant effects toward bisphenol A-induced toxicity in female wistar rats. Oxid Med Cell Longev 2018:5167524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Celik H, Kucukler S, Ozdemir S, Comakli S, Gur C, Kandemir FM, Yardim A (2020) Lycopene protects against central and peripheral neuropathy by inhibiting oxaliplatin-induced ATF-6 pathway, apoptosis, inflammation and oxidative stress in brains and sciatic tissues of rats. Neurotoxicology 80:29–40

    Article  CAS  PubMed  Google Scholar 

  74. Scheidegger R, Pande AK, Bounds PL, Koppenol WH (1998) The reaction of peroxynitrite with zeaxanthin. Nitric Oxide 2(1):8–16

    Article  CAS  PubMed  Google Scholar 

  75. El-Akabawy G, El-Sherif NM (2019) Zeaxanthin exerts protective effects on acetic acid-induced colitis in rats via modulation of pro-inflammatory cytokines and oxidative stress. Biomed Pharmacother 111:841–851

    Article  CAS  PubMed  Google Scholar 

  76. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, Dhama K (2014) Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int 2014:761264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Eghbaliferiz S, Iranshahi M (2016) Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: updated review of mechanisms and catalyzing metals. Phytother Res 30(9):1379–1391

    Article  CAS  PubMed  Google Scholar 

  78. Edge R, Truscott TG (1997) Prooxidant and antioxidant reaction mechanisms of carotene and radical interactions with vitamins E and C. Nutrition 13(11–12):992–994

    Article  CAS  PubMed  Google Scholar 

  79. Shin J, Song M-H, Oh J-W, Keum Y-S, Saini RK (2020) Pro-oxidant actions of carotenoids in triggering apoptosis of cancer cells: a review of emerging evidence. Antioxidants 9(6):1–17

    Article  CAS  Google Scholar 

  80. Siems W, Sommerburg O, Schild L, Augustin W, Langhans C-D, Wiswedel I (2002) Beta-carotene cleavage products induce oxidative stress in vitro by impairing mitochondrial respiration. FASEB J 16(10):1289–1291

    Article  CAS  PubMed  Google Scholar 

  81. Palozza P, Serini S, Di Nicuolo F, Piccioni E, Calviello G (2003) Prooxidant effects of β-carotene in cultured cells. Mol Asp Med 24(6):353–362

    Article  CAS  Google Scholar 

  82. Arathi BP, Sowmya PR-R, Kuriakose GC, Vijay K, Baskaran V, Jayabaskaran C, Lakshminarayana R (2016) Enhanced cytotoxic and apoptosis inducing activity of lycopene oxidation products in different cancer cell lines. Food Chem Toxicol 97:265–276

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work received financial support from PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through grant UIDB/50006/2020 (LAQV-REQUIMTE Associate Laboratory) and from the European Union (FEDER funds through COMPETE POCI-01-0145-FEDER-029253). Marisa Freitas acknowledges the financial support from the European Union (FEDER funds through COMPETE POCI-01-0145-FEDER-029248).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eduarda Fernandes or Daniela Ribeiro .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lucas, M., Freitas, M., Carvalho, F., Fernandes, E., Ribeiro, D. (2021). Antioxidant and Pro-oxidant Activities of Carotenoids. In: Ekiert, H.M., Ramawat, K.G., Arora, J. (eds) Plant Antioxidants and Health. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-45299-5_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45299-5_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45299-5

  • Online ISBN: 978-3-030-45299-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics