Skip to main content

A Review on Role of Solar Drying Technology in Sustainable Development

  • Conference paper
  • First Online:
Intelligent Computing Applications for Sustainable Real-World Systems (ICSISCET 2019)

Abstract

Sustainable development is basically a progress in such a manner that the present condition becomes better but not on the compromise of future generation ability to fulfill their needs. Due to growth in population, some people are still facing the problem in fulfilling their basic needs which are food, water, shelter etc. The need of food is tried to meet by utilizing solar energy via solar dryers. Solar dryer reduces the post-harvest losses and increases the storage time. Solar drying is now not limited to agricultural production and drying but it is also used in some other sectors like textile, rubber, dairy, sludge drying etc. The paper presents how the solar dryers are contributing in sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Singh, P., Shrivastava, V., Kumar, A.: Recent developments in greenhouse solar drying: a review. Renew. Sustain. Energy Rev. 82, 3250–3262 (2018). https://doi.org/10.1016/j.rser.2017.10.020

    Article  Google Scholar 

  2. Eltawil, M.A., Azam, M.M., Alghannam, A.O.: Solar PV powered mixed-mode tunnel dryer for drying potato chips. Renew. Energy 116, 594–605 (2018). https://doi.org/10.1016/j.renene.2017.10.007

    Article  Google Scholar 

  3. Mewa, E.A., Okoth, M.W., Kunyanga, C.N., Rugiri, M.N.: Experimental evaluation of beef drying kinetics in a solar tunnel dryer. Renew. Energy (2019). https://doi.org/10.1016/j.renene.2019.02.067

    Article  Google Scholar 

  4. Sallam, Y.I., Aly, M.H., Nassar, A.F., Mohamed, E.A.: Solar drying of whole mint plant under natural and forced convection. J. Adv. Res. 6, 171–178 (2015). https://doi.org/10.1016/j.jare.2013.12.001

    Article  Google Scholar 

  5. Zoukit, A., El, Ferouali H., Salhi, I., Doubabi, S., Abdenouri, N.: Takagi Sugeno fuzzy modeling applied to an indirect solar dryer operated in both natural and forced convection. Renew. Energy 133, 849–860 (2019). https://doi.org/10.1016/j.renene.2018.10.082

    Article  Google Scholar 

  6. Kumar, M., Sansaniwal, S.K., Khatak, P.: Progress in solar dryers for drying various commodities. Renew. Sustain. Energy Rev. 55, 346–360 (2016). https://doi.org/10.1016/j.rser.2015.10.158

    Article  Google Scholar 

  7. Shalaby, S.M., Bek, M.A., El-Sebaii, A.A.: Solar dryers with PCM as energy storage medium: a review. Renew. Sustain. Energy Rev. 33, 110–116 (2014). https://doi.org/10.1016/j.rser.2014.01.073

    Article  Google Scholar 

  8. Visavale, G.L.: Principles, Classification and Selection of Solar Dryers. National University of Singapore Press, Singapore (2012)

    Google Scholar 

  9. Bhardwaj, A.K., Kumar, R., Chauhan, R.: Experimental investigation of the performance of a novel solar dryer for drying medicinal plants in Western Himalayan region. Sol. Energy 177, 395–407 (2019). https://doi.org/10.1016/j.solener.2018.11.007

    Article  Google Scholar 

  10. Lamrani, B., Khouya, A., Draoui, A.: Energy and environmental analysis of an indirect hybrid solar dryer of wood using TRNSYS software. Sol. Energy 183, 132–145 (2019)

    Article  Google Scholar 

  11. Tripathy, P.P.: Investigation into solar drying of potato: effect of sample geometry on drying kinetics and CO2 emissions mitigation. J. Food Sci. Technol. 52, 1383–1393 (2015). https://doi.org/10.1007/s13197-013-1170-0

    Article  Google Scholar 

  12. Arata, A., Sharma, V., Spagna, G.: Performance evaluation of solar assisted dryers for low temperature drying application-II Experimental results. Energy Convers. Manag. 34, 417–426 (1993)

    Article  Google Scholar 

  13. Barnwal, P., Tiwari, G.N.: Life cycle energy metrics and CO2 credit analysis of a hybrid photovoltaic/thermal greenhouse dryer. Int. J. Low Carbon Technol. 3, 203–220 (2008). https://doi.org/10.1093/ijlct/3.3.203

    Article  Google Scholar 

  14. Shrivastava, V., Kumar, A.: Embodied energy analysis of the indirect solar drying unit. Int. J. Ambient Energy 38, 280–285 (2017). https://doi.org/10.1080/01430750.2015.1092471

    Article  Google Scholar 

  15. Singh, S., Kumar, S.: Solar drying for different test conditions: Proposed framework for estimation of specific energy consumption and CO2 emissions mitigation. Energy 51, 27–36 (2013). https://doi.org/10.1016/j.energy.2013.01.006

    Article  Google Scholar 

  16. Prakash, O., Kumar, A., Laguri, V.: Performance of modified greenhouse dryer with thermal energy storage. Energy Rep. 2, 155–162 (2016). https://doi.org/10.1016/j.egyr.2016.06.003

    Article  Google Scholar 

  17. Prakash, O., Kumar, A.: Environomical analysis and mathematical modelling for tomato flakes drying in a modified greenhouse dryer under active mode. Int. J. Food Eng. 10, 1–13 (2014). https://doi.org/10.1515/ijfe-2013-0063

    Article  Google Scholar 

  18. Kaygusuz, K.: Environmental impacts of the solar energy systems. Energy Sources Part A Recover Util. Environ. Eff. 31, 1376–1386 (2009). https://doi.org/10.1080/15567030802089664

    Article  Google Scholar 

  19. Solangi, K.H., Islam, M.R., Saidur, R., Rahim, N.A., Fayaz, H.: A review on global solar energy policy. Renew. Sustain. Energy Rev. 15, 2149–2163 (2011). https://doi.org/10.1016/j.rser.2011.01.007

    Article  Google Scholar 

  20. Kannan, N., Vakeesan, D.: Solar energy for future world. Renew. Sustain. Energy Rev. 62, 1092–1105 (2016)

    Article  Google Scholar 

  21. ELkhadraoui, A., Kooli, S., Hamdi, I., Farhat, A.: Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape. Renew Energy (2015). https://doi.org/10.1016/j.renene.2014.11.090

  22. Boonyasri, M., Lertsatitthanakorn, C., Wiset, L., Poomsa, N.: Performance analysis and economic evaluation of a greenhouse dryer for pork drying. KKU Eng. J. 38, 433–443 (2011)

    Google Scholar 

  23. Janjai, S., Khamvongsa, V., Bala, B.K.: Development, design, and performance of a PV-ventilated greenhouse dryer. Int. Energy J. 8, 249–258 (2007)

    Google Scholar 

  24. Janjai, S., Lamlert, N., Intawee, P., Mahayothee, B., Bala, B.K., Nagle, M., et al.: Experimental and simulated performance of a PV-ventilated solar greenhouse dryer for drying of peeled longan and banana. Sol. Energy 83, 1550–1565 (2009). https://doi.org/10.1016/j.solener.2009.05.003

    Article  Google Scholar 

  25. Janjai, S., Phusampao, C., Nilnont, W., Pankaew, P.: Experimental performance and modeling of a greenhouse solar dryer for drying macadamia nuts. Int. J. Sci. Eng. Res. 5, 1155–1161 (2014)

    Google Scholar 

  26. Akmak, G., Yildiz, C.: The drying kinetics of seeded grape in solar dryer with PCM-based solar integrated collector. Food Bioprod. Process. 89, 103–108 (2011). https://doi.org/10.1016/j.fbp.2010.04.001

    Article  Google Scholar 

  27. Ayyappan, S., Mayilsamy, K., Sreenarayanan, V.V.: Performance improvement studies in a solar greenhouse drier using sensible heat storage materials. Heat Mass Transf. 52, 459–467 (2015). https://doi.org/10.1007/s00231-015-1568-5

    Article  Google Scholar 

  28. Lamidi, R.O., Jiang, L., Pathare, P.B., Wang, Y.D., Roskilly, A.P.: Recent advances in sustainable drying of agricultural produce: a review. Appl. Energy 233–234, 367–385 (2019). https://doi.org/10.1016/j.apenergy.2018.10.044

    Article  Google Scholar 

  29. Zarezade, M., Mostafaeipour, A.: Identifying the effective factors on implementing the solar dryers for Yazd province. Iran. Renew. Sustain. Energy Rev. 57, 765–775 (2016). https://doi.org/10.1016/j.rser.2015.12.060

    Article  Google Scholar 

  30. Mustapha, M.K., Salako, A.F., Ademola, S.K., Adefila, I.A.: Qualitative performance and economic analysis of low cost solar fish driers in Sub-Saharan Africa. J. Fish. 2 (64) 2014. https://doi.org/10.17017/jfish.v2i1.2014.23

  31. Singh, P., Shrivastava, V.: Thermal performance assessment of greenhouse solar dryer under passive mode. Int. J. Adv. Technol. Eng. Sci. 5, 530–538 (2017)

    Google Scholar 

  32. Ferreira, A.G., Gonçalves, L.M., Maia, C.B.: Solar drying of a solid waste from steel wire industry. Appl. Therm. Eng. 73, 102–108 (2014). https://doi.org/10.1016/j.applthermaleng.2014.07.047

    Article  Google Scholar 

  33. Sonthikun, S., Chairat, P., Fardsin, K., Kirirat, P., Kumar, A., Tekasakul, P.: Computational fluid dynamic analysis of innovative design of solar-biomass hybrid dryer: an experimental validation. Renew. Energy 92, 185–191 (2016). https://doi.org/10.1016/j.renene.2016.01.095

    Article  Google Scholar 

  34. Singh, P.L.: Silk cocoon drying in forced convection type solar dryer. Appl. Energy 88, 1720–1726 (2011). https://doi.org/10.1016/j.apenergy.2010.11.016

    Article  Google Scholar 

  35. Bennamoun, L.: Solar drying of wastewater sludge: a review. Renew. Sustain. Energy Rev. 16, 1061–1073 (2012). https://doi.org/10.1016/j.rser.2011.10.005

    Article  Google Scholar 

  36. Perré, P., Keey, R.B.: Drying of wood principles and practices. In: Handbook of Industrial. Drying, 4th edn, pp. 797–846 (2014). https://doi.org/10.1201/b17208

  37. Atkins, M.J., Walmsley, M.R.W., Morrison, A.S.: Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes. Energy 35, 1867–1873 (2010). https://doi.org/10.1016/j.energy.2009.06.039

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpendra Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, P., Gaur, M.K. (2020). A Review on Role of Solar Drying Technology in Sustainable Development. In: Pandit, M., Srivastava, L., Venkata Rao, R., Bansal, J. (eds) Intelligent Computing Applications for Sustainable Real-World Systems. ICSISCET 2019. Proceedings in Adaptation, Learning and Optimization, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-44758-8_3

Download citation

Publish with us

Policies and ethics