Skip to main content

Physiology of Vasopressin Secretion

  • Living reference work entry
  • First Online:
Hydro Saline Metabolism

Part of the book series: Endocrinology ((ENDOCR))

  • 83 Accesses

Abstract

Vasopressin (AVP) represents the key endocrine regulator of water balance. It is synthesized in the hypothalamic supraoptic and paraventricular nuclei and then transported to the neurohypophysis, where it is released in the bloodstream. Alterations in plasma osmolality represent the main input affecting AVP secretion, yet many other physiological and pathophysiological conditions can intervene in modulating its levels, as hypovolemia and hypotension. AVP primarily controls plasma osmolality and fluid volume by inducing synthesis and insertion of essential water transport proteins in the kidneys, thus reabsorbing water into blood circulation and reducing diuresis. Moreover, AVP exerts vascular and platelet control and intervenes in several metabolic pathways, including glycogenolysis and gluconeogenesis. Furthermore, AVP stimulates the release of adrenocorticotropic hormone (ACTH). AVP exerts its multiple effects by binding to its receptors, classified in different subtypes depending on tissue expression, function, and second messengers. Disorders in AVP synthesis or action can lead to clinical syndromes characterized by water and electrolyte imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Agre P, Brown D, Nielsen S. Aquaporin water channels: unanswered questions and unresolved controversies. Curr Opin Cell Biol. 1995;7:472–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball SG. Vasopressin and disorders of water balance: the physiology and pathophysiology of vasopressin. Ann Clin Biochem. 2007;44:417–31.

    Article  CAS  PubMed  Google Scholar 

  • Bankir L, Bichet DG, Morgenthaler NG. Vasopressin: physiology, assessment and osmosensation. J Intern Med. 2017;282:284–97.

    Article  CAS  PubMed  Google Scholar 

  • Barat C, Simpson L, Breslow E. Properties of human vasopressin precursor constructs: inefficient monomer folding in the absence of copeptin as a potential contributor to diabetes insipidus. Biochemistry. 2004;43:8191–203.

    Article  CAS  PubMed  Google Scholar 

  • Baylis PH, Thompson CJ. Osmoregulation of vasopressin secretion and thirst in health and disease. Clin Endocrinol. 1988;29:549–76.

    Article  CAS  Google Scholar 

  • Bichet DG, Arthus MF, Barjon JN, Lonergan M, Kortas C. Human platelet fraction arginine-vasopressin. Potential physiological role. J Clin Invest. 1987;79:881–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boone M, Deen PMT. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflügers Arch – Eur J Physiol. 2008;456:1005–24.

    Article  CAS  Google Scholar 

  • Carter DA, Murphy D. Rapid changes in poly (A) tail length of vasopressin and oxytocin mRNAs form a common early component of neurohypophyseal peptide gene activation following physiological stimulation. Neuroendocrinology. 1991;53:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Christ-Crain M, Morgenthaler NG, Fenske W. Copeptin as a biomarker and a diagnostic tool in the evaluation of patients with polyuria-polydipsia and hyponatremia. Best Pract Res Clin Endocrinol Metab. 2016;30:235–47.

    Article  CAS  PubMed  Google Scholar 

  • Côté M, Salzman KL, Sorour M, Couldwell WT. Normal dimensions of the posterior pituitary bright spot on magnetic resonance imaging. J Neurosurg. 2014;120:357–62.

    Article  PubMed  Google Scholar 

  • Cunningham JT, et al. Cardiovascular regulation of supraoptic vasopressin neurons. Prog Brain Res. 2002;139:257–73.

    CAS  PubMed  Google Scholar 

  • Davison JM, Gilmore EA, Dürr J, Robertson GL, Lindheimer MD. Altered osmotic thresholds for vasopressin secretion and thirst in human pregnancy. Am J Phys. 1984;246:F105–9.

    CAS  Google Scholar 

  • Dobsa L, Edozien KC. Copeptin and its potential role in diagnosis and prognosis of various diseases. Biochem Med. 2013;23:172–90.

    Article  CAS  Google Scholar 

  • du Vigneaud V, Gish DT, Katsoyannis PG. A synthetic preparation possessing biological properties associated with arginine vasopressin. J Am Chem Soc. 1954;76:4751–2.

    Article  Google Scholar 

  • Esposito P, Piotti G, Bianzina S, Malul Y, Dal Canton A. The syndrome of inappropriate antidiuresis: pathophysiology, clinical management and new therapeutic options. Nephron Clin Pract. 2011;119:c62–73.

    Article  CAS  PubMed  Google Scholar 

  • Fenske W, et al. A copeptin-based approach in the diagnosis of diabetes insipidus. N Engl J Med. 2018;379:428–39.

    Article  CAS  PubMed  Google Scholar 

  • Garrahy A, Moran C, Thompson CJ. Diagnosis and management of central diabetes insipidus in adults. Clin Endocrinol. 2019;90:23–30.

    Article  Google Scholar 

  • Hernando F, Schoots O, Lolait SJ, Burbach JPH. Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin. Endocrinology. 2001;142:1659–68.

    Article  CAS  PubMed  Google Scholar 

  • Holmes CL, Landry DW, Granton JT. Science review: vasopressin and the cardiovascular system part 2 – clinical physiology. Crit Care. 2004;8:15–23.

    Article  PubMed  Google Scholar 

  • Ichaliotis SD, Lambrinopoulos TC. Serum oxytocinase in twin pregnancy. Obstet Gynecol. 1965;25:270–2.

    CAS  PubMed  Google Scholar 

  • Johnson AK, Thunhorst RL. The neuroendocrinology of thirst and salt appetite: visceral sensory signals and mechanisms of central integration. Front Neuroendocrinol. 1997;18:292–353.

    Article  CAS  PubMed  Google Scholar 

  • Lauson HD. Metabolism of antidiuretic hormones. Am J Med. 1967;42:713–44.

    Article  CAS  PubMed  Google Scholar 

  • Lindheimer MD, Barron WM, Davison JM. Osmoregulation of thirst and vasopressin release in pregnancy. Am J Phys. 1989;257:F159–69.

    CAS  Google Scholar 

  • Lolait SJ, et al. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature. 1992;357:336–9.

    Article  CAS  PubMed  Google Scholar 

  • McKenna K, Thompson C. Osmoregulation in clinical disorders of thirst appreciation. Clin Endocrinol. 1998;49:139–52.

    Article  CAS  Google Scholar 

  • Morgenthaler NG, Struck J, Alonso C, Bergmann A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52:112–9.

    Article  CAS  PubMed  Google Scholar 

  • Moses AM, Miller M. Osmotic threshold for vasopressin release as determined by saline infusion and by dehydration. Neuroendocrinology. 1971;7:219–26.

    Article  CAS  PubMed  Google Scholar 

  • Muhsin SA, Mount DB. Diagnosis and treatment of hypernatremia. Best Pract Res Clin Endocrinol Metab. 2016;30:189–203.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, Knepper MA. Vasopressin activates collecting duct urea transporters and water channels by distinct physical processes. Am J Phys. 1993;265:F204–13.

    CAS  Google Scholar 

  • Nielsen S, Smith BL, Christensen EI, Knepper MA, Agre P. CHIP28 water channels are localized in constitutively water-permeable segments of the nephron. J Cell Biol. 1993;120:371–83.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen S, et al. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82:205–44.

    Article  CAS  PubMed  Google Scholar 

  • Novak J, et al. Relaxin is essential for renal vasodilation during pregnancy in conscious rats. J Clin Invest. 2001;107:1469–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parodi AJ. Protein glucosylation and its role in protein folding. Annu Rev Biochem. 2000;69:69–93.

    Article  CAS  PubMed  Google Scholar 

  • Robertson GL. Disorders of the neurohypophysis. In: Jameson JL, editor. Harrison’s endocrinology. USA: McGraw-Hill; 2013. p. 50–61.

    Google Scholar 

  • Robinson AG, Verbalis JG. Posterior pituitary. In: Hetherington P, Ryan J, editors. Williams textbook of endocrinology. USA: Elsevier; 2011. p. 291–316.

    Google Scholar 

  • Schally A. Hormones of the neurohypophysis. In: Lock W, Schally AV, editors. The hypothalamus and pituitary in health and disease. Springfield: Thomas; 1972. p. 154–71.

    Google Scholar 

  • Spruce BA, Baylis PH, Burd J, Watson MJ. Variation in osmoregulation of arginine vasopressin during the human menstrual cycle. Clin Endocrinol. 1985;22:37–42.

    Article  CAS  Google Scholar 

  • Stout NR, Kenny RA, Baylis PH. A review of water balance in ageing in health and disease. Gerontology. 1999;45:61–6.

    Article  CAS  PubMed  Google Scholar 

  • Szinnai G, et al. Changes in plasma Copeptin, the C-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J Clin Endocrinol Metab. 2007;92:3973–8.

    Article  CAS  PubMed  Google Scholar 

  • Weitzman RE, Kleeman CR. The clinical physiology of water metabolism. Part I: The physiologic regulation of arginine vasopressin secretion and thirst. West J Med. 1979;131:373–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zingg HH. Vasopressin and oxytocin receptors. Bailliere Clin Endocrinol Metab. 1996;10:75–96.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Mantovani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mantovani, G., Mangone, A., Sala, E. (2023). Physiology of Vasopressin Secretion. In: Caprio, M., Fernandes-Rosa, F.L. (eds) Hydro Saline Metabolism. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-030-44628-4_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44628-4_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44628-4

  • Online ISBN: 978-3-030-44628-4

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics