Skip to main content

Robust H2 Performance in Feedback Control

  • Reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 55 Accesses

Abstract

This entry discusses an important compromise in feedback design: reconciling the superior performance characteristics of the \(\mathcal {H}_{2}\) optimization criterion, with robustness requirements expressed through induced norms such as \(\mathcal {H}_{\infty }\). The fact that both criteria have frequency-domain characterizations and involve similar state-space machinery motivated many researchers to seek an adequate combination. We review here robust \(\mathcal {H}_{2}\) analysis methods based on convex optimization developed in the 1990s and comment on their implications for controller synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Anderson B, Moore JB (1990) Optimal control: linear quadratic methods. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Bernstein DS, Haddad WH (1989) LQG control with an \(\mathcal {H}_{\infty }\) performance bound: a Riccati equation approach. IEEE Trans Autom Control 34(3):293–305

    Article  MathSciNet  MATH  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Doyle J (1978) Guaranteed margins for LQG regulators. IEEE Trans Autom Control 23(4):756–757

    Article  Google Scholar 

  • Doyle J, Zhou K, Glover K, Bodenheimer B (1994) Mixed \(\mathcal {H}_2\) and \(\mathcal {H}_{\infty }\) performance objectives II: optimal control. IEEE Trans Autom Control 39(8):1575–1587

    Google Scholar 

  • Dullerud GE, Paganini F (2000) A course in robust control theory: a convex approach. Texts in applied mathematics, vol 36. Springer, New York

    Google Scholar 

  • Feron E (1997) Analysis of robust \(\mathcal {H}_{2}\) performance using multiplier theory. SIAM J Control Optim 35(1): 160–177

    Article  MathSciNet  MATH  Google Scholar 

  • Khargonekar P, Rotea M (1991) Mixed \(\mathcal {H}_2/\mathcal {H}_{\infty }\) control: a convex optimization approach. IEEE Trans Autom Control 36(7):824–837

    Google Scholar 

  • Oksendal B (1985) Stochastic differential equations. Springer, New York

    Book  MATH  Google Scholar 

  • Paganini F (1999) Convex methods for robust \(\mathcal {H}_2\) analysis of continuous time systems. IEEE Trans Autom Control 44(2):239–252

    Article  MathSciNet  MATH  Google Scholar 

  • Paganini F, Feron E (1999) LMI methods for robust \(\mathcal {H}_2\) analysis: a survey with comparisons. In: El Ghaoui L, Niculescu S (Eds) Recent advances on LMI methods in control. SIAM, Philadelphia

    Google Scholar 

  • Sánchez-Peña R, Sznaier M (1998) Robust systems theory and applications. Wiley, New York

    Google Scholar 

  • Scherer C, Gahinet P, Chilali M (1997) Multiobjective output-feedback control via LMI-optimization. IEEE Trans Autom Control 42:896–911

    Article  MathSciNet  MATH  Google Scholar 

  • Stoorvogel AA (1993) The robust \(\mathcal {H}_2\) control problem: a worst-case design. IEEE Trans Autom Control 38(9):1358–1370

    Article  MATH  Google Scholar 

  • Sznaier M, Rotstein H, Bu J, Sideris A (2000) An exact solution to continuous-time mixed \(\mathcal {H}_{2}/\mathcal {H}_{\infty }\) control problems. IEEE Trans Autom Control 45(11):2095–2101

    Google Scholar 

  • Sznaier M, Amishima T, Parrilo PA, Tierno J (2002) A convex approach to robust \(\mathcal {H}_{2}\) performance analysis. Automatica 38:957–966

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou K, Glover K, Bodenheimer B, Doyle J (1994) Mixed \(\mathcal {H}_2\) and \(\mathcal {H}_{\infty }\) performance objectives I: robust performance analysis. IEEE Trans Autom Control 39(8):1564–1574

    Google Scholar 

  • Zhou K, Doyle J, Glover K (1996) Robust and optimal control. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Paganini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Paganini, F. (2021). Robust H2 Performance in Feedback Control. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-44184-5_164

Download citation

Publish with us

Policies and ethics