Skip to main content

Robust Synthesis and Robustness Analysis Techniques and Tools

  • Reference work entry
  • First Online:
Encyclopedia of Systems and Control

Abstract

This entry provides a brief summary of the synthesis and analysis tools that have been developed by the robust control community. Many software tools have been developed to implement the major theoretical techniques in robust control. These software tools have enabled robust synthesis and analysis techniques to be successfully applied to numerous industrial applications.

Gary Balas: deceased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Apkarian P, Noll D (2006) IQC analysis and synthesis via nonsmooth optimization. Syst Control Lett 55:971–981

    Article  MathSciNet  MATH  Google Scholar 

  • Balas GJ, Packard AK, Chiang RC, Safonov M (2013) MATLAB robust control toolbox. The Mathworks Inc.

    Google Scholar 

  • Boyd S, Barrat C (1991) Linear controller design: limits of performance. Prentice Hall

    Google Scholar 

  • Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Desoer C, Vidyasagar M (2008) Feedback systems: input–output properties. Classics in applied mathematics. SIAM, Philadelphia

    MATH  Google Scholar 

  • Desoer C, Liu R, Murray J, Saeks R (1980) Feedback system design: a fractional representation approach to analysis and synthesis. IEEE Trans Autom Control 25(6):399–412

    Article  MathSciNet  MATH  Google Scholar 

  • Doyle J (1978) Guaranteed margins for LQG regulators. IEEE Trans Autom Control 23(4):756–757

    Article  Google Scholar 

  • Doyle J (1982) Analysis of feedback systems with structured uncertainties. IEE Proc Part D 129(6):242–251

    Article  MathSciNet  Google Scholar 

  • Doyle J, Stein G (1981) Multivariable feedback design: concepts for a clasical/modern synthesis. IEEE Trans Autom Control 26(1):4–16

    Article  MATH  Google Scholar 

  • Doyle J, Glover K, Khargonekar P, Francis B (1989) State-space solutions to standard H2 and H control problems. IEEE Trans Autom Control 34(8): 831–847

    Article  MATH  Google Scholar 

  • Dullerud G, Paganini F (2000) A course in robust control theory: a convex approach. Springer, New York

    Book  MATH  Google Scholar 

  • Fan MKH, Tits AL, Doyle JC (1991) Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics. IEEE Trans Autom Control 36(1):25–38

    Article  MathSciNet  MATH  Google Scholar 

  • Francis B (1987) A course in \(\mathcal {H}_{\infty }\) control theory. Lecture notes in control and information sciences, vol 88. Springer, Berlin/New York

    Google Scholar 

  • Jxxxomloxxxnsson U, Kao CY, Megretski A, Rantzer A (2004) A guide to IQCβ: a MATLAB toolbox for robust stability and performance analysis

    Google Scholar 

  • Megretski A, Rantzer A (1997) System analysis via integral quadratic constraints. IEEE Trans Autom Control 42(6):819–830

    Article  MathSciNet  MATH  Google Scholar 

  • Packard A, Doyle J (1993) The complex structured singular value. Automatica 29(1):71–109

    Article  MathSciNet  MATH  Google Scholar 

  • Safonov M (1982) Stability margins of diagonally perturbed multivariable feedback systems. IEE Proc Part D 129(6):251–256

    Article  MathSciNet  Google Scholar 

  • Skogestad S, Postlethwaite I (2005) Multivariable feedback control: analysis and design. Wiley, Hoboken

    MATH  Google Scholar 

  • Vidyasagar M (1985) Control system synthesis: a factorization approach. MIT, Cambridge

    MATH  Google Scholar 

  • Willems JC (1971) Least squares stationary optimal control and the algebraic Riccati equation. IEEE Trans Autom Control 16:621–634

    Article  MathSciNet  Google Scholar 

  • Zames G (1981) Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses. IEEE Trans Autom Control 26(1):301–320

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou K, Doyle J, Glover K (1996) Robust and optimal control. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Balas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Balas, G., Packard, A., Seiler, P. (2021). Robust Synthesis and Robustness Analysis Techniques and Tools. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-44184-5_145

Download citation

Publish with us

Policies and ethics