Skip to main content

Quantum Stochastic Processes and the Modelling of Quantum Noise

  • Reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 79 Accesses

Abstract

This brief entry gives an overview of quantum mechanics as a quantum probability theory. It begins with a review of the basic operator-algebraic elements that connect probability theory with quantum probability theory. Then quantum stochastic processes are formulated as a generalization of stochastic processes within the framework of quantum probability theory. Quantum Markov models from quantum optics are used to explicitly illustrate the underlying abstract concepts and their connections to the quantum regression theorem from quantum optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this entry we will use the qualifier “classical” in brackets to emphasize that a theory is not quantum mechanical.

  2. 2.

    Here we do not consider a general QSDE as we do not include the so-called gauge or exchange process Λ(t); see Hudson and Parthasarathy 1984 for details.

Bibliography

  • Accardi L, Frigerio A, Lewis JT (1982) Quantum stochastic processes. Publ RIMS Kyoto Univ 19:97–133

    Article  MathSciNet  MATH  Google Scholar 

  • Billingsley P (1986) Probability and measure, 2nd edn. Wiley series in probability and mathematical statistics. Wiley, New York

    MATH  Google Scholar 

  • Bingham NH (2000) Studies in the history of probability and statistics XLVI. Measure into probability: from Lebesque to Kolmogorov. Biometrika 87(1):145–156

    Article  MathSciNet  MATH  Google Scholar 

  • Bouten L, van Handel R (2008) On the separation principle of quantum control. In: Belavkin VP, Guta M (eds) Quantum stochastics and information: statistics, filtering and control (University of Nottingham, 15–22 July 2006). World Scientific, Singapore, pp 206–238

    Chapter  Google Scholar 

  • Bouten L, van Handel R, James MR (2007) An introduction to quantum filtering. SIAM J Control Optim 46:2199–2241

    Article  MathSciNet  MATH  Google Scholar 

  • Bratelli O, Robinson DW (1979) Operator algebras and quantum statistical mechanics. Texts and monographs in physics, vol I. Springer, New York

    Book  Google Scholar 

  • Combes J, Kerckhoff J, Sarovar M (2017) The SLH framework for modeling quantum input-output networks. Adv Phys X 2(784)

    Google Scholar 

  • Gardiner CW, Zoller P (2004) Quantum noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics, 3rd edn. Springer, Berlin/New York

    MATH  Google Scholar 

  • Gottesman D (2009) An introduction to quantum error correction and fault-tolerant quantum computation, arXiv preprint: [Online] Available: https://arxiv.org/abs/0904.2557

  • Gough J, James MR (2009a) Quantum feedback networks: Hamiltonian formulation. Comm Math Phys 287:1109–1132

    Article  MathSciNet  MATH  Google Scholar 

  • Gough J, James MR (2009b) The series product and its application to quantum feedforward and feedback networks. IEEE Trans Automat Control 54(11): 2530–2544

    Article  MathSciNet  MATH  Google Scholar 

  • Gough J, James MR, Nurdin HI (2011) Quantum master equation and filter for systems driven by filed in a single photon state. In: Proceedings of IEEE conference on decision and control, pp 5570–5576

    Google Scholar 

  • Gough J, James MR, Nurdin HI, Combes J (2012) Quantum filtering for systems driven by fields in single-photon states or superposition of coherent states. Phys Rev A 86:043819

    Article  Google Scholar 

  • Gough JE, Zhang G (2015) Generating nonclassical quantum input field states with modulating filters. EPJ Quantum Technol 2(15)

    Google Scholar 

  • Gough JE, James MR, Nurdin HI (2013) Quantum filtering for systems driven by fields in single photon states and superposition of coherent states using non-markovian embeddings. Quantum Inf Process 12:1469–1499

    Article  MathSciNet  MATH  Google Scholar 

  • Gough JE, James MR, Nurdin HI (2014) Quantum trajectories for a class of continuous matrix product input states. New J Phys 16:075008

    Article  MATH  Google Scholar 

  • Hudson RL, Parthasarathy KR (1984) Quantum Ito’s formula and stochastic evolution. Commun Math Phys 93:301–323

    Article  MathSciNet  MATH  Google Scholar 

  • Kerckhoff J, Nurdin HI, Pavlichin D, Mabuchi H (2010) Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. Phys Rev Lett 105:040502–1–040502–4

    Google Scholar 

  • Meyer PA (1995) Quantum probability for probabilists, 2nd edn. Springer, Berlin/Heidelberg

    Book  MATH  Google Scholar 

  • Nurdin HI, Yamamoto N (2017) Linear dynamical quantum systems: analysis, synthesis, and control. Communications and control engineering. Springer, Cham/Switzerland

    Book  MATH  Google Scholar 

  • Parthasarathy K (1992) An introduction to quantum stochastic calculus. Birkhauser, Berlin

    Book  MATH  Google Scholar 

  • Shafer G, Vovk V (2006) The sources of Kolmogorov’s Grundbegriffe. Stat Sci 21(1):70–98

    Article  MathSciNet  MATH  Google Scholar 

  • Streater RF (2000) Classical and quantum probability. J Math Phys 41(6):3556

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendra I. Nurdin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nurdin, H.I. (2021). Quantum Stochastic Processes and the Modelling of Quantum Noise. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-44184-5_100160

Download citation

Publish with us

Policies and ethics