Skip to main content

Free Space of Rigid Objects: Caging, Path Non-existence, and Narrow Passage Detection

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIII (WAFR 2018)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 14))

Included in the following conference series:

Abstract

In this paper, we present an approach towards approximating configuration spaces of 2D and 3D rigid objects. The approximation can be used to identify caging configurations and establish path non-existence between given pairs of configurations. We prove correctness and analyse completeness of our approach. Using dual diagrams of unions of balls and uniform grids on SO(3), we provide a way to approximate a 6D configuration space of a rigid object. Depending on the desired level of guaranteed approximation accuracy, the experiments with our single core implementation show runtime between 5–21 s and 463–1558 s. Finally, we establish a connection between robotic caging and molecular caging from organic chemistry, and demonstrate that our approach is applicable to 3D molecular models. The supplementary material for this paper can be found at https://anvarava.github.io/publications/wafr-2018-supplementary-material.pdf.

A. Varava and J. Frederico Carvalho—These two authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Throughout the paper \(n \in \{2, 3\}\).

  2. 2.

    A theoretical analysis of different ways to define the free space can be found in [20].

  3. 3.

    By distance here we mean Euclidean distance in \(\mathbb {R}^n\).

  4. 4.

    This is a cover by closed sets, but given \(q' > q\) satisfying \(D(R_{q}) < \varepsilon \) we can use instead \(U(\phi _i,\varepsilon ) = (\phi _i - q', \phi _i + q')\) which results on the same graph.

  5. 5.

    Since the KDTree T uses the Euclidean distance in \(\mathbb {R}^4\) we employ the formula \(\Vert p - q \Vert = 2 \sin (\frac{\rho (p,q)}{2}) \).

References

  1. Barraquand, J., Kavraki, L., Latombe, J.-C., Motwani, R., Li, T.-Y., Raghavan, P.: A random sampling scheme for path planning. IJRR 16(6), 759–774 (1997)

    Google Scholar 

  2. Basch, J., Guibas, L.J., Hsu, D., Nguyen, A.T.: Disconnection proofs for motion planning. In: IEEE ICRA, pp. 1765–1772 (2001)

    Google Scholar 

  3. Behar, E., Lien, J.-M.: Mapping the configuration space of polygons using reduced convolution. In: IEEE/RSJ Intelligent Robots and Systems, pp. 1242–1248 (2013)

    Google Scholar 

  4. Edelsbrunner, H.: Deformable smooth surface design. Discrete Comput. Geom. 21(1), 87–115 (1999)

    Article  MathSciNet  Google Scholar 

  5. Kuperberg, W.: Problems on polytopes and convex sets. In: DIMACS Workshop on Polytopes, pp. 584–589 (1990)

    Google Scholar 

  6. Latombe, J.-C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)

    Book  Google Scholar 

  7. Lozano-Perez, T.: Spatial planning: a configuration space approach. IEEE Trans. Comput. 2, 108–120 (1983)

    Article  MathSciNet  Google Scholar 

  8. Mahler, J., Pokorny, F.T., McCarthy, Z., van der Stappen, A.F., Goldberg, K.: Energy-bounded caging: formal definition and 2-D energy lower bound algorithm based on weighted alpha shapes. IEEE RA-L 1(1), 508–515 (2016)

    Google Scholar 

  9. Makita, S., Maeda, Y.: 3D multifingered caging: basic formulation and planning. In: IEEE IROS, pp. 2697–2702 (2008)

    Google Scholar 

  10. Makita, S., Okita, K., Maeda, Y.: 3D two-fingered caging for two types of objects: sufficient conditions and planning. Int. J. Mechatron. Autom. 3(4), 263–277 (2013)

    Article  Google Scholar 

  11. Makita, S., Wan, W.: A survey of robotic caging and its applications. Adv. Robot. 31(19–20), 1071–1085 (2017)

    Article  Google Scholar 

  12. Makapunyo, T., Phoka, T., Pipattanasomporn, P., Niparnan, N., Sudsang, A.: Measurement framework of partial cage quality based on probabilistic motion planning. In: IEEE ICRA, pp. 1574–1579 (2013)

    Google Scholar 

  13. McCarthy, Z., Bretl, T., Hutchinson, S.: Proving path non-existence using sampling and alpha shapes. In: IEEE ICRA, pp. 2563–2569 (2012)

    Google Scholar 

  14. Mitra, T., Jelfs, K.E., Schmidtmann, M., Ahmed, A., Chong, S.Y., Adams, D.J., Cooper, A.I.: Molecular shape sorting using molecular organic cages. Nat. Chem. 5, 276 (2013)

    Article  Google Scholar 

  15. Milenkovic, V., Sacks, E., Trac, S.: Robust complete path planning in the plane. In: Frazzoli, E., Lozano-Perez, T., Roy, N., Rus, D. (eds.) Algorithmic Foundations of Robotics X, pp. 37–52. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Pipattanasomporn, P., Sudsang, A.: Two-finger caging of concave polygon. In: IEEE ICRA, pp. 2137–2142 (2006)

    Google Scholar 

  17. Pipattanasomporn, P., Sudsang, A.: Two-finger caging of nonconvex polytopes. IEEE T-RO 27(2), 324–333 (2011)

    Article  Google Scholar 

  18. Pokorny, F.T., Stork, J.A., Kragic, D.: Grasping objects with holes: a topological approach. In: IEEE ICRA, pp. 1100–1107 (2013)

    Google Scholar 

  19. Rimon, E., Blake, A.: Caging planar bodies by one-parameter two-fingered gripping systems. IJRR 18(3), 299–318 (1999)

    Google Scholar 

  20. Rodriguez, A., Mason, M.T.: Path connectivity of the free space. IEEE T-RO 28(5), 1177–1180 (2012)

    Article  Google Scholar 

  21. Rodriguez, A., Mason, M.T., Ferry, S.: From caging to grasping. IJRR 31(7), 886–900 (2012)

    Google Scholar 

  22. Rother, M., Nussbaumer, M.G., Rengglic, K., Bruns, N.: Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chem. Soc. Rev. 45, 6213 (2016)

    Article  Google Scholar 

  23. Stork, J.A., Pokorny, F.T., Kragic, D.: Integrated motion and clasp planning with virtual linking. In: IEEE/RSJ IROS, pp. 3007–3014 (2013)

    Google Scholar 

  24. Stork, J.A., Pokorny, F.T., Kragic, D.: A topology-based object representation for clasping, latching and hooking. In: IEEE-RAS International Conference on Humanoid Robots, pp. 138–145 (2013)

    Google Scholar 

  25. Pereira, G.A.S., Campos, M.F.M., Kumar, V.: Decentralized algorithms for multi-robot manipulation via caging. IJRR 23(7–8), 783–795 (2004)

    Google Scholar 

  26. Varava, A., Kragic, D., Pokorny, F.T.: Caging grasps of rigid and partially deformable 3-d objects with double fork and neck features. IEEE T-RO 32(6), 1479–1497 (2016)

    Article  Google Scholar 

  27. Varava, A., Carvalho, J.F., Pokorny, F.T., Kragic, D.: Caging and path non-existence: a deterministic sampling-based verification algorithm. In: ISRR (2017). Preprint: https://www.csc.kth.se/~jfpbdc/path_non_ex.pdf

  28. Vahedi, M., van der Stappen, A.F.: Caging polygons with two and three fingers. IJRR 27(11–12), 1308–1324 (2008)

    MATH  Google Scholar 

  29. Wang, Z., Kumar, V.: Object closure and manipulation by multiple cooperating mobile robots. In: IEEE ICRA, pp. 394–399 (2002)

    Google Scholar 

  30. Wise, K., Bowyer, A.: A survey of global configuration-space mapping techniques for a single robot in a static environment. IJRR 19(8), 762–779 (2000)

    Google Scholar 

  31. Zhang, L., Young, J.K., Manocha, D.: Efficient cell labelling and path non-existence computation using C-obstacle query. IJRR 27(11–12), 1246–1257 (2008)

    Google Scholar 

  32. Zhu, D., Latombe, J.: New heuristic algorithms for efficient hierarchical path planning. IEEE T-RO 7(1), 9–20 (1991)

    Google Scholar 

  33. Yershova, A., Jain, S., LaValle, S.M., Mitchell, J.C.: Generating uniform incremental grids on SO(3) using the Hopf fibration. IJRR 29, 801–812 (2009)

    Google Scholar 

  34. Zomorodian, A., Edelsbrunner, H.: Fast software for box intersections. In: Proceedings of the 16th Annual Symposium on Computational Geometry, pp. 129–138 (2000)

    Google Scholar 

  35. Liu, J., Xin, S., Gao, Z., Xu, K., Tu, C., Chen, B.: Caging loops in shape embedding space: theory and computation. In: ICRA (2018)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to D. Devaurs, L. Kavraki, and O. Kravchenko for their insights into molecular caging. This work has been supported by the Knut and Alice Wallenberg Foundation and Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasiia Varava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varava, A., Carvalho, J.F., Pokorny, F.T., Kragic, D. (2020). Free Space of Rigid Objects: Caging, Path Non-existence, and Narrow Passage Detection. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_2

Download citation

Publish with us

Policies and ethics