Skip to main content

Pushing Fast and Slow: Task-Adaptive Planning for Non-prehensile Manipulation Under Uncertainty

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIII (WAFR 2018)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 14))

Included in the following conference series:

Abstract

We propose a planning and control approach to physics-based manipulation. The key feature of the algorithm is that it can adapt to the accuracy requirements of a task, by slowing down and generating “careful” motion when the task requires high accuracy, and by speeding up and moving fast when the task tolerates inaccuracy. We formulate the problem as an MDP with action-dependent stochasticity and propose an approximate online solution to it. We use a trajectory optimizer with a deterministic model to suggest promising actions to the MDP, to reduce computation time spent on evaluating different actions. We conducted experiments in simulation and on a real robotic system. Our results show that with a task-adaptive planning and control approach, a robot can choose fast or slow actions depending on the task accuracy and uncertainty level. The robot makes these decisions online and is able to maintain high success rates while completing manipulation tasks as fast as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The uniform range used for each parameter is given here. Box x-y extents: \(\left[ 0.05\,\mathrm{m},0.075\,\mathrm{m}\right] \); box height: \(\left[ 0.036\,\mathrm{m},0.05\,\mathrm{m}\right] \); cylinder radius: \(\left[ 0.04\,\mathrm{m},0.07\,\mathrm{m}\right] \); cylinder height: \(\left[ 0.04\,\mathrm{m},0.05\,\mathrm{m}\right] \); mass: \(\left[ 0.2\,\mathrm{kg},0.8\,\mathrm{kg}\right] \); coef. fric.: \(\left[ 0.2,0.6\right] \).

  2. 2.

    The random position for the pushed object is sampled from a Gaussian with a mean at the lower end of the table (0.1 m from the edge of a 0.6 m long table along the center axis and a variance of 0.01 m.).

References

  1. Agboh, W.C., Dogar, M.R.: Real-time online re-planning for grasping under clutter and uncertainty. In: IEEE-RAS Humanoids (2018)

    Google Scholar 

  2. Arruda, E., Mathew, M.J., Kopicki, M., Mistry, M., Azad, M., Wyatt, J.L.: Uncertainty averse pushing with model predictive path integral control. In: Humanoids (2017)

    Google Scholar 

  3. Bubeck, S., Stoltz, G., Szepesvári, C., Munos, R.: Online optimization in X-armed bandits. In: NIPS (2009)

    Google Scholar 

  4. Calli, B., Dollar, A.M.: Vision-based model predictive control for within-hand precision manipulation with underactuated grippers. In: ICRA (2017)

    Google Scholar 

  5. Choi, S., Lee, K., Lim, S., Oh, S.: Uncertainty-aware learning from demonstration using mixture density networks with sampling-free variance modeling. In: ICRA (2018)

    Google Scholar 

  6. Diankov, R., Srinivasa, S.S., Ferguson, D., Kuffner, J.: Manipulation planning with caging grasps. In: Humanoids (2008)

    Google Scholar 

  7. Dogar, M.R., Hsiao, K., Ciocarlie, M., Srinivasa, S.: Physics-based grasp planning through clutter. In: Robotics: Science and Systems (2012)

    Google Scholar 

  8. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. Exp. Psychol. 47, 381 (1954)

    Article  Google Scholar 

  9. Hogan, F.R., Rodriguez, A.: Feedback control of the pusher-slider system: a story of hybrid and underactuated contact dynamics. In: WAFR (2016)

    Google Scholar 

  10. Howe, R.D., Cutkosky, M.R.: Practical force-motion models for sliding manipulation. IJRR 15(6), 557–572 (1996)

    Google Scholar 

  11. Johnson, A.M., King, J., Srinivasa, S.: Convergent planning. IEEE RA-L 1, 1044–1051 (2016)

    Google Scholar 

  12. Kahn, G., Villaflor, A., Pong, V., Abbeel, P., Levine, S.: Uncertainty-aware reinforcement learning for collision avoidance. CoRR (2017)

    Google Scholar 

  13. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP: stochastic trajectory optimization for motion planning. In: ICRA (2011)

    Google Scholar 

  14. Kavraki, L., Latombe, J.C.: Randomized preprocessing of configuration for fast path planning. In: ICRA (1994)

    Google Scholar 

  15. Kearns, M.J., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal planning in large Markov decision processes. In: IJCAI (1999)

    Google Scholar 

  16. King, J.E., Haustein, J.A., Srinivasa, S., Asfour, T.: Nonprehensile whole arm rearrangement planning on physics manifolds. In: ICRA (2015)

    Google Scholar 

  17. Kitaev, N., Mordatch, I., Patil, S., Abbeel, P.: Physics-based trajectory optimization for grasping in cluttered environments. In: ICRA (2015)

    Google Scholar 

  18. Li, W., Todorov, E.: Iterative linear quadratic regulator design for nonlinear biological movement systems. In: ICINCO (2004)

    Google Scholar 

  19. Luders, B., Kothari, M., How, J.P.: Chance constrained RRT for probabilistic robustness to environmental uncertainty. In: AIAA Guidance, Navigation, and Control Conference (2010)

    Google Scholar 

  20. Mansley, C., Weinstein, A., Littman, M.L.: Sample-based planning for continuous action Markov decision processes. In: ICAPS (2011)

    Google Scholar 

  21. Mason, M.T.: Mechanics and planning of manipulator pushing operations. Int. J. Robot. Res. 5(3), 53–71 (1986)

    Article  Google Scholar 

  22. Mayne, D.Q., Rawlings, J.B., Rao, C.V., Scokaert, P.O.M.: Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  Google Scholar 

  23. Muhayyuddin, Moll, M., Kavraki, L., Rosell, J.: Randomized physics-based motion planning for grasping in cluttered and uncertain environments. IEEE RA-L 3(2), 712–719 (2018)

    Google Scholar 

  24. Péret, L., Garcia, F.: On-line search for solving Markov decision processes via heuristic sampling. In: ECAI. IOS Press (2004)

    Google Scholar 

  25. Richter, C., Roy, N.: Safe visual navigation via deep learning and novelty detection. In: RSS (2017)

    Google Scholar 

  26. Ruiz-Ugalde, F., Cheng, G., Beetz, M.: Fast adaptation for effect-aware pushing. In: Humanoids (2011)

    Google Scholar 

  27. Sieverling, A., Eppner, C., Wolff, F., Brock, O.: Interleaving motion in contact and in free space for planning under uncertainty. In: IROS (2017)

    Google Scholar 

  28. Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: IROS (2012)

    Google Scholar 

  29. Toussaint, M., Allen, K., Smith, K., Tenenbaum, J.: Differentiable physics and stable modes for tool-use and manipulation planning. In: RSS (2018)

    Google Scholar 

  30. Williams, G., Aldrich, A., Theodorou, E.: Model predictive path integral control using covariance variable importance sampling. CoRR (2015)

    Google Scholar 

  31. Yu, K.T., Bauza, M., Fazeli, N., Rodriguez, A.: More than a million ways to be pushed. A high-fidelity experimental dataset of planar pushing. In: IROS (2016)

    Google Scholar 

  32. Zhou, J., Paolini, R., Johnson, A.M., Bagnell, J.A., Mason, M.T.: A probabilistic planning framework for planar grasping under uncertainty. IEEE RA-L 2(4), 2111–2118 (2017)

    Google Scholar 

  33. Zhu, Y., Wang, Z., Merel, J., Rusu, A., Erez, T., Cabi, S., Tunyasuvunakool, S., Kramár, J., Hadsell, R., de Freitas, N., Heess, N.: Reinforcement and imitation learning for diverse visuomotor skills. In: RSS (2018)

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No. 746143, and from the UK Engineering and Physical Sciences Research Council under grants EP/P019560/1 and EP/R031193/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wisdom C. Agboh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agboh, W.C., Dogar, M.R. (2020). Pushing Fast and Slow: Task-Adaptive Planning for Non-prehensile Manipulation Under Uncertainty. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_10

Download citation

Publish with us

Policies and ethics