Skip to main content

A Generalized Label Correcting Method for Optimal Kinodynamic Motion Planning

  • Chapter
  • First Online:
Algorithmic Foundations of Robotics XII

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 13))

Abstract

An optimal kinodynamic motion planning algorithm is presented and described as a generalized label correcting (GLC) method. Advantages of the technique include a simple implementation, convergence to the optimal cost with increasing resolution, and no requirement for a point-to-point local planning subroutine. The principal contribution of this paper is the construction and analysis of the GLC conditions which are the basis of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE Transactions on Robotics and Automation 12(4) (1996) 566–580

    Google Scholar 

  2. Karaman, S., Frazzoli, E.: Sampling-Based Algorithms for Optimal Motion Planning. The International Journal of Robotics Research 30(7) (2011) 846–894

    Google Scholar 

  3. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. The International Journal of Robotics Research 21(3) (2002) 233–255

    Google Scholar 

  4. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. The International Journal of Robotics Research 20(5) (2001) 378–400

    Google Scholar 

  5. Karaman, S., Frazzoli, E.: Optimal Kinodynamic Motion Planning Using Incremental Sampling-Based Methods. In: IEEE Conference on Decision and Control. (2010) 7681–7687

    Google Scholar 

  6. Perez, A., Platt Jr, R., Konidaris, G., Kaelbling, L., Lozano-Perez, T.: LQR-RRT*: Optimal Sampling-Based Motion Planning with Automatically Derived Extension Heuristics. In: International Conference on Robotics and Automation, IEEE (2012) 2537–2542

    Google Scholar 

  7. Xie, C., van den Berg, J., Patil, S., Abbeel, P.: Toward Asymptotically Optimal Motion Planning for Kinodynamic Systems Using a Two-Point Boundary Value Problem Solver. In: International Conference on Robotics and Automation, IEEE (2015) 4187–4194

    Google Scholar 

  8. Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische mathematik 1(1) (1959) 269–271

    Google Scholar 

  9. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous vehicles in unknown semi-structured environments. The International Journal of Robotics Research 29(5) (2010) 485–501

    Google Scholar 

  10. Li, Y., Littlefield, Z., Bekris, K.E.: Sparse Methods for Efficient Asymptotically Optimal Kinodynamic Planning. In: Algorithmic Foundations of Robotics XI. Springer (2015) 263–282

    Google Scholar 

  11. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Education (1955)

    Google Scholar 

  12. Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of Minimum Cost Paths. Systems Science and Cybernetics 4(2) (1968) 100–107

    Google Scholar 

  13. Karaman, S.: RRT* Library. http://karaman.mit.edu/software.html

  14. Li, Y., Littlefield, Z., Bekris, K.E.: Sparse RRT package. https://bitbucket.org/pracsys/sparse_rrt/ Accessed: Jan. 2016.

  15. Spong, M.W.: The Swing Up Control Problem for the Acrobot. Control Systems, IEEE 15(1) (1995) 49–55

    Google Scholar 

  16. Yershov, D.S., LaValle, S.M.: Sufficient Conditions for the Existence of Resolution Complete Planning Algorithms. In: Algorithmic Foundations of Robotics IX. Springer (2011) 303–320

    Google Scholar 

  17. Khalil, H.K., Grizzle, J.: Nonlinear Systems. Volume 3. Prentice hall New Jersey (1996)

    Google Scholar 

  18. Kolmogorov, A.N., Fomin, S.V.: Elements of the Theory of Functions and Functional Analysis. Vol. 2, Measure. The Lebesgue Integral. Hilbert Spaces. Graylock Press (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Paden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paden, B., Frazzoli, E. (2020). A Generalized Label Correcting Method for Optimal Kinodynamic Motion Planning. In: Goldberg, K., Abbeel, P., Bekris, K., Miller, L. (eds) Algorithmic Foundations of Robotics XII. Springer Proceedings in Advanced Robotics, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-43089-4_33

Download citation

Publish with us

Policies and ethics