Skip to main content

Classification of Tissue Regions in Histopathological Images: Comparison Between Pre-trained Convolutional Neural Networks and Local Binary Patterns Variants

  • Chapter
  • First Online:
Deep Learners and Deep Learner Descriptors for Medical Applications

Abstract

The identification of tissue regions within histopathological images represents a fundamental step for diagnosis, patient stratification and follow-up. However, the huge amount of image data made available by the ever improving whole-slide imaging devices gives rise to a bottleneck in manual, microscopy-based evaluation. Furthermore, manual procedures generally show a significant intra- and/or inter-observer variability. In this scenario the objective of this chapter is to investigate the effectiveness of image features from last-generation, pre-trained convolutional networks against variants of Local Binary Patterns for classifying tissue sub-regions into meaningful classes such as epithelium, stroma, lymphocytes and necrosis. Experimenting with seven datasets of histopathological images we show that both classes of methods can be quite effective for the task, but with a noticeable superiority of descriptors based on convolutional neural networks. In particular, we show that these can be seamlessly integrated with standard classifiers (e.g. Support Vector Machines) to attain overall discrimination accuracy between 95 and 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Underline indicates colour descriptors. For a detailed description of each method please refer to the given references.

References

  1. Huijbers, A., Tollenaar, R.A.E.M., Pelt, G.W.V., Zeestraten, E.C.M., Dutton, S., McConkey, C.C., Domingo, E., Smit, V.T.H.B.M. , Midgley, R., Warren, B.F., Johnstone, E.C., Kerr, D.J., Mesker, W.E.: The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: validation in the VICTOR trial. Ann. Oncol. 24(1), 179–185 (2013)

    Google Scholar 

  2. Park, J.H., Richards, C.H., McMillan, D.C., Horgan, P.G., Roxburgh, C.S.D.: The relationship between tumour stroma percentage, the tumour microenvironment and survival in patients with primary operable colorectal cancer. Ann. Oncol. 25(3), 644–651 (2014)

    Article  Google Scholar 

  3. van Pelt, G.W., Sandberg, T.P., Morreau, H., Gelderblom, H., van Krieken, J.H.J.M., Tollenaar, R.A.E.M., Mesker, W.E.: The tumour-stroma ratio in colon cancer: the biological role and its prognostic impact. Histopathology 73(2), 197–206 (2018). August

    Article  Google Scholar 

  4. Chen, Y., Zhang, L., Liu, W., Liu, X.: Prognostic significance of the tumor-stroma ratio in epithelial ovarian cancer. BioMed Res. Int. 2015 (2015)

    Google Scholar 

  5. Lv, Z., Cai, X., Weng, X., Xiao, H., Du, C., Cheng, J., Zhou, L., Xie, H., Sun, K., Wu, J., Zheng, S.: Tumor-stroma ratio is a prognostic factor for survival in hepatocellular carcinoma patients after liver resection or transplantation. Surgery 158(1), 142–150 (2015)

    Article  Google Scholar 

  6. Zhang, X.-L., Jiang, C., Zhang, Z.-X., Liu, F., Zhang, F., Cheng, Y.-F.: The tumor-stroma ratio is an independent predictor for survival in nasopharyngeal cancer. Oncol. Res. Treat. 37(9), 480–484 (2014)

    Article  Google Scholar 

  7. De Kruijf, E.M., van Nes, J.G.H., van De Velde,C.J.H., Putter, H., Smit, V.T.H.B.M., Liefers, G.J., Kuppen, P.J.K., Tollenaar, R.A.E.M., Mesker, W.E.: Tumor-stroma ratio in the primary tumor is a prognostic factor in early breast cancer patients, especially in triple-negative carcinoma patients. Breast Cancer Res. Treat. 125(3), 687–696 (2011)

    Google Scholar 

  8. Dekker, T.J.A., van De Velde, C.J.H., van Pelt, G.W., Kroep, J.R., Julien, J.-P., Smit, V.T.H.B.M., Tollenaar, R.A.E.M., Mesker, W.E.: Prognostic significance of the tumor-stroma ratio: validation study in node-negative premenopausal breast cancer patients from the eortc perioperative chemotherapy (pop) trial (10854). BBreast Cancer Res. Treat. 139(2):371–379 (2013)

    Google Scholar 

  9. Vangangelt, K.M.H., van Pelt, G.W., Engels, C.C., Putter, H., Liefers, G.J., Smit, V.T.H.B.M., Tollenaar, R.A.E.M., Kuppen, P.J.K., Mesker, W.E.: Prognostic value of tumor–stroma ratio combined with the immune status of tumors in invasive breast carcinoma. Breast Cancer Res. Treat. 168(3), 601–612 (2018)

    Google Scholar 

  10. Mouawad, R., Spano, J.-P., Khayat, D.: Lymphocyte infiltration in breast cancer: a key prognostic factor that should not be ignored. J. Clin. Oncol. 29(33), 4471 (2011)

    Article  Google Scholar 

  11. Correale, P., Rotundo, M.S., Botta, C., Vecchio, M.T.D., Tassone, P., Tagliaferri, P.: Tumor infiltration by chemokine receptor 7 (ccr7)+ t-lymphocytes is a favorable prognostic factor in metastatic colorectal cancer. OncoImmunology 1(4), 531–532 (2012)

    Article  Google Scholar 

  12. Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., Tosolini, M., Camus, M., Berger, A., Wind, P., Zinzindohoué, F., Bruneval, P., Cugnenc, P.H., Trajanoski, Z., Fridman, W.H., Pagès, F.: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795), 1960–1964 (2006). September

    Article  Google Scholar 

  13. Halama, N., Michel, S., Kloor, M., Zoernig, I., Benner, A., Spille, A., Pommerencke, T., von Knebel, D.M., Folprecht, G., Luber, B., Feyen, N., Martens, U.M., Beckhove, P., Gnjatic, S., Schirmacher, P., Herpel, E., Weitz, J., Grabe, N., Jaeger, D.: Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 71(17), 5670–5677 (2011)

    Google Scholar 

  14. Ness, N., Andersen, S., Valkov, A., Nordby, Y., Donnem, T., Al-Saad, S., Busund, L.-T., Bremnes, R.M., Richardsen, E.: Infiltration of cd8+ lymphocytes is an independent prognostic factor of biochemical failure-free survival in prostate cancer. Prostate 74(14), 1452–1461 (2014)

    Article  Google Scholar 

  15. Caruso, R., Parisi, A., Bonanno, A., Paparo, D., Emilia, Q., Branca, G., Scardigno, M., Fedele, F.: Histologic coagulative tumour necrosis as a prognostic indicator of aggressiveness in renal, lung, thyroid and colorectal carcinomas: a brief review. Oncol. Lett. 3(1), 16–18 (2012)

    Article  Google Scholar 

  16. Hynes, S.O., Coleman, H.G., Kelly, P.J., Irwin, S., O’Neill, R.F., Gray, R.T., Mcgready, C., Dunne, P.D., Mcquaid, S., James, J.A., Salto-Tellez, M., Loughrey, M.B.: Back to the future: routine morphological assessment of the tumour microenvironment is prognostic in stage ii/iii colon cancer in a large population-based study. Histopathology 71(1), 12–26 (2017). In press

    Article  Google Scholar 

  17. Linder, N., Konsti, J., Turkki, R., Rahtu, E., Lundin, M., Nordling, S., Haglund, C., Ahonen, T., Pietikäinen, M., Lundin, J.: Identification of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagn. Pathol. 7(22), 1–11 (2012)

    Google Scholar 

  18. Courrech Staal, E.F.W., Smit, V.T.H.B.M., van Velthuysen, M.-L.F., Spitzer-Naaykens, J.M.J., Wouters, M.W.J.M., Mesker,W.E., Tollenaar, R.A.E.M., van Sandick, J.W.: Reproducibility and validation of tumour stroma ratio scoring on oesophageal adenocarcinoma biopsies. Eur. J. Cancer 47(3), 375–382 (2011)

    Google Scholar 

  19. Fuchs, T.J., Buhmann, J.M.: Computational pathology: challenges and promises for tissue analysis. Comput. Med. Imaging Graph. 35(7–8), 515–530 (2011)

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, USA (December 2012)

    Google Scholar 

  21. Sang, H., Zhou, Z.: Automatic detection of human faces in color images via convolutional neural networks. ICIC Express Lett., Part B: Appl. 7(4) (2016)

    Google Scholar 

  22. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep Fisher networks for large-scale image classification. In:Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, USA (December 2013)

    Google Scholar 

  23. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  24. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017). February

    Article  Google Scholar 

  25. Cimpoi, M., Maji, S., Kokkinos, I., Vedaldi, A.: Deep filter banks for texture recognition, description, and segmentation. Int. J. Comput. Vis. 118(1), 65–94 (2016)

    Article  MathSciNet  Google Scholar 

  26. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2014, pp. 512–519, Columbus, USA (June 2014)

    Google Scholar 

  27. Fernández, A., Álvarez, M.X., Bianconi, F.: Texture description through histograms of equivalent patterns. J. Math. Imaging Vis. 45(1), 76–102 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, L., Fieguth, P., Guo, Y., Wang, X., Pietikäinen, M.: Local binary features for texture classification: taxonomy and experimental study. Pattern Recognit. 62, 135–160 (2017)

    Article  Google Scholar 

  29. Meijer, G.A., Beliën, J.A.M., Van Diest, P.J., Baak, J.P.A.: Image analysis in clinical pathology. J. Clin. Pathol. 50(5), 365–370 (1997)

    Article  Google Scholar 

  30. Al-Janabi, S., Huisman, A., Van Diest, P.J.: Digital pathology: current status and future perspectives. Histopathology 61(1), 1–9 (2012)

    Article  Google Scholar 

  31. Gurcan, M.N., Boucheron, L.E., Can, A., Madabhushi, A., Rajpoot, N.M., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147–171 (2009)

    Article  Google Scholar 

  32. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7(1) (2016). Art. no. 29

    Google Scholar 

  33. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016)

    Article  Google Scholar 

  34. Veta, M., Pluim, J.P.W., Van Diest, P.J., Viergever, M.A.: Breast cancer histopathology image analysis: a review. IEEE Trans. Biomed. Eng. 61(5), 1400–1411 (2014)

    Article  Google Scholar 

  35. Watanabe, K., Kobayashi, T., Wada,T.: Semi-supervised feature transformation for tissue image classification. PLoS ONE 11(12) (2016). Article number e0166413

    Google Scholar 

  36. Diamond, J., Anderson, N.H., Bartels, P.H., Montironi, R., Hamilton, P.W.: The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Hum. Pathol. 35(9), 1121–1131 (2004)

    Article  Google Scholar 

  37. Bianconi, F., Fernández, A., Álvarez Larrán, A.: Discrimination between tumour epithelium and stroma via perception-based features. Neurocomputing 154, 119–126 (2015)

    Google Scholar 

  38. Nava, R., González, G., Kybic, J., Escalante-Ramírez, B.: Classification of tumor epithelium and stroma in colorectal cancer based on discrete Tchebichef moments. Lect. Notes Comput. Sci. (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9401, 79–87 (2016)

    Google Scholar 

  39. Kather, J.N., Weis, C.-A., Bianconi, F., Melchers, S.M., Schad, L.R., Gaiser, T., Marx, A., Zöllner, F.G.: Multi-class texture analysis in colorectal cancer histology. Sci. Rep. 6 (2016). Art. no. 27988

    Google Scholar 

  40. Badejo, J.A., Adetiba, E., Akinrinmade, A., Akanle, M.B.: Medical image classification with hand-designed or machine-designed texture descriptors: a performance evaluation. In: Rojas, I., Ortuño, F. (eds.) Proceedings of the International Conference on Bioinformatics and Biomedical Engineering (IWBBIO), Lecture Notes in Computer Science, vol. 10814, Granada, Spain, April 2018, pp. 266–275. Springer

    Google Scholar 

  41. Greenspan, H., van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  42. Ciompi, F., Geessink, O., Bejnordi, B.E., de Souza, G.S., Baidoshvili, A., Litjens, G., van Ginneken, B., Nagtegaal, I., van der Laak, J.: The importance of stain normalization in colorectal tissue classification with convolutional networks. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Melbourne, Australia, April 2017 (2017). To appear

    Google Scholar 

  43. Spanhol, F.A., Oliveira, L.S., Petitjean, C., Heutte, L.: Breast cancer histopathological image classification using convolutional neural networks. In: Proceedings of the International Joint Conference on Neural Networks, pp. 2560–2567, Vancouver, Canada (July 2016)

    Google Scholar 

  44. Xu, J., Luo, X., Wang, G., Gilmore, H., Madabhushi, A.: A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191, 214–223 (2016)

    Article  Google Scholar 

  45. Gao, Z., Wang, L., Zhou, L., Zhang, J.: HEp-2 cell image classification with deep convolutional neural networks. IEEE J. Biomed. Health Inform. 21(2), 416–428 (2017). March

    Article  Google Scholar 

  46. Veta, M., van Diest, P.J., Willems, S.M., Wang, H., Madabhushi, A., Cruz-Roa, A., Gonzalez, F., Larsen, A.B.L., Vestergaard, J.S., Dahl, A.B., Cireşan, D.C., Schmidhuber, J., Giusti, A., Gambardella, L.M., Tek, F.B., Walter, T., Wang, C.-W., Kondo, S., Matuszewski, B.J., Precioso, F., Snell, V., Kittler, J., de Campos, T.E., Khan, A.M., Rajpoot, N.M., Arkoumani, E., Viergever, M.A, Lacle, M.M., Pluim, J.P.W.: Assessment of algorithms for mitosis detection in breast cancer histopathology images. Medical Image Analysis 20(1):237–248 (2015)

    Google Scholar 

  47. Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Article  Google Scholar 

  48. Van Ginneken, B., Setio, A.A.A., Jacobs, C., Ciompi,F.: Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans. In: Proceedings of the 12th IEEE International Symposium on Biomedical Imaging, ISBI 2015, pp. 286–289, Brooklyn, USA (April 2015)

    Google Scholar 

  49. Arevalo, J., Gonzalez, F.A., Ramos-Pollan, R., Oliveira, J.L., Lopez, M.A.G.: Convolutional neural networks for mammography mass lesion classification. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Milan, Italy, November 2015, pp. 797–800

    Google Scholar 

  50. Vedaldi, A., Lenc, K.: MatConvNet: convolutional neural networks for MATLAB. In: Proceedings of the 23rd ACM International Conference on Multimedia (MM 2015), pp. 689–692, Brisbane, Australia (October 2015)

    Google Scholar 

  51. Jia, J., Shelhamer, E.: Caffe deep learning framework. http://caffe.berkeleyvision.org/. Last accessed 19 Apr 2017

  52. Webmicroscope: EGFR colon TMA stroma LBP classification (2012). http://fimm.webmicroscope.net/Research/Supplements/epistroma. Accessed 17 Aug 2018

  53. Linder, N., Martelin, E., Lundin, M., Louhimo, J., Nordling, S., Haglund, C., Lundin, J.: Xanthine oxidoreductase—clinical significance in colorectal cancer and in vitro expression of the protein in human colon cancer cells. Eur. J. Cancer 45(4), 648–655 (2009). March

    Article  Google Scholar 

  54. Beck, A.H., Sangoi, A.R., Leung, S., Marinelli, R.J., Nielsen, T.O., van de Vijver, M.J., West, R.B., van de Rijn, M., Koller, D.: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3(108), 1–11 (2011)

    Article  Google Scholar 

  55. Beck, A., Sangoi, A., Leung, S., Marinelli, R., Nielsen, T., van de Vijver, M., West, R., van de Rijn, M., Koller, D.: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival (2011). https://tma.im/tma-portal/C-Path/images.html. Accessed 2 Mar 2017

  56. Kather, J.N., Marx, A., Reyes-Aldasoro, C.C., Schad, L.R., Zöllner, F.G., Weis, C.A.: Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images. Oncotarget 6(22), 19163–19176 (2015). August

    Article  Google Scholar 

  57. Kather, J. N., Zöllner, F. G., Bianconi, F., Melchers, S. M., Schad, L. R., Gaiser, T., Marx, A., Weis, C.-A.: Collection of textures in colorectal cancer histology (May 2016)

    Google Scholar 

  58. Mesker, W.E., Junggeburt, J.M.C., Szuhai, K., De Heer, P., Morreau, H., Tanke, H.J., Tollenaar, R.A.E.M.: The carcinoma-stromal ratio of colon carcinoma is an independent factor for survival compared to lymph node status and tumor stage. Cell. Oncol. 29(5), 387–398 (2007)

    Google Scholar 

  59. Cusano, C., Napoletano, P., Schettini, R.: Combining multiple features for color texture classification. J. Electron. Imaging 25(6), (2016). Article number 061410

    Google Scholar 

  60. Parkhi, O., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Proceedings of the British Machine Vision Conference 2015, Swansea, UK (2015)

    Google Scholar 

  61. ImageNet. http://www.image-net.org. Accessed 23 Feb 2018

  62. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (CVPR2015), Boston, USA (2015)

    Google Scholar 

  63. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  64. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: Proceedings of the British Machine Vision Conference 2014, Nottingham, United Kingdom (2014)

    Google Scholar 

  65. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In:Proceedings of the 5th International Conference on Learning Representations, San Diego, USA (2015)

    Google Scholar 

  66. Fernández, A., Ghita, O., González, E., Bianconi, F., Whelan, P.F.: Evaluation of robustness against rotation of lbp, ccr and ilbp features in granite texture classification. Mach. Vis. Appl. 22(6), 913–926 (2011)

    Article  Google Scholar 

  67. Guo, Z., Zhang, L.: A completed modeling of local binary patterns operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  68. Liu, L., Zhao, L., Long, Y., Kuang, G., Fieguth, P.: Extended local binary patterns for texture classification. Image Vis. Comput. 30, 86–99 (2012)

    Article  Google Scholar 

  69. He, Y., Sang, N., Robust illumination invariant texture classification using gradient local binary patterns. In Proceedings of, : International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping, p. 2011. Xiamen, China (2011)

    Google Scholar 

  70. Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under Bayesian framework. In: Proceedings of the 3rd International Conference on Image and Graphics, pp. 306–309, Hong Kong, China (December 2004)

    Google Scholar 

  71. Bianconi, F., Bello-Cerezo, R., Napoletano, P.: Improved opponent color local binary patterns: an effective local image descriptor for color texture classification. J. Electron. Imaging 27(1) (2018). Art. No. 011002

    Google Scholar 

  72. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  73. Lee, S., Choi, J., Ro, Y., Plataniotis, K.: Local color vector binary patterns from multichannel face images for face recognition. IEEE Trans. Image Process. 21(4), 2347–2353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  74. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. In: Analysis and Modelling of Faces and Gestures, vol. 4778. Lecture Notes in Computer Science. Springer (2007)

    Google Scholar 

  75. Mäenpää, T., Pietikäinen, M.: Texture analysis with local binary patterns. In: Chen, C.H., Wang, P.S.P. (eds) Handbook of Pattern Recognition and Computer Vision, 3rd edn, pp. 197–216. World Scientific Publishing (2005)

    Google Scholar 

  76. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Proceedings of the 3rd European Conference on Computer Vision (ECCV 1994) (1994)

    Google Scholar 

  77. He, D.-C., Wang, L.: Texture unit, texture spectrum, and texture analysis. IEEE Trans. Geosci. Remote. Sens. 28(4), 509–512 (1990)

    Article  Google Scholar 

  78. Bianconi, F., Bello-Cerezo, R., Napoletano, P., Di Maria, F.: Improved opponent colour local binary patterns for colour texture classification. In: Bianco, S., Schettini, R., Tominaga, S., Tremeau, A. (eds.) Proceedings of the 6th Computational Color Imaging Workshop (CCIW 2017). Lecture Notes in Computer Science, vol. 10213, Milan, Italy, March 2017, pp. 272–281. Springer

    Google Scholar 

  79. Cernadas, E., Fernández-Delgado, M., González-Rufino, E., Carrión, P.: Influence of normalization and color space to color texture classification. Pattern Recognit. 61, 120–138 (2017)

    Google Scholar 

  80. Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A practical guide to support vector classification, 2016. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf. Last accessed 22 Mar 2017

  81. Kanji, G.K.: 100 Statistical Tests, 3rd edn. Society for Industrial and Applied Mathematics (2006)

    Google Scholar 

  82. Cusano, C., Napoletano, P., Schettini, R.: Evaluating color texture descriptors under large variations of controlled lighting conditions. J. Opt. Soc. Am. A: Opt. Image Sci. Vis. 33(1), 17–30 (2016)

    Article  Google Scholar 

  83. Huang, Y., Zheng, H., Liui, C., Ding, X., Rohde, G.K.: Epithelium-stroma classification via convolutional neural networks and unsupervised domain adaptation in histopathological images. IEEE J. Biomed. Health Inform. 21(6), 1625–1632 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Italian Ministry of University and Research (MIUR) under the Individual Funding Scheme for Fundamental Research ‘FFABR’ 2017 (F. Bianconi) and by the Department of Engineering at the Università degli Studi di Perugia, Italy, within the Fundamental Research Grants Scheme 2018 (F. Bianconi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bianconi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kather, J.N. et al. (2020). Classification of Tissue Regions in Histopathological Images: Comparison Between Pre-trained Convolutional Neural Networks and Local Binary Patterns Variants. In: Nanni, L., Brahnam, S., Brattin, R., Ghidoni, S., Jain, L. (eds) Deep Learners and Deep Learner Descriptors for Medical Applications. Intelligent Systems Reference Library, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-030-42750-4_3

Download citation

Publish with us

Policies and ethics