Skip to main content

Hybrid Electric-Pneumatic Actuator

  • Chapter
  • First Online:
Novel Bioinspired Actuator Designs for Robotics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 888))

Abstract

Compared to biological muscles, current technical actuators are limited in their performance and versatility to realize human-like locomotion. In order to overcome the actuator limitations for locomotion, we introduce the hybrid EPA actuator as a combination of electric and pneumatic actuators in this chapter. As a new variable impedance actuator, the EPA design provides direct access to the control and morphological properties. We demonstrate that with the EPA, the actuator limitations could be clearly reduced in vertical hopping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Geyer, H., Seyfarth, A., & Blickhan, R. (2003). Positive force feedback in bouncing gaits?. Proceedings of the Royal Society of London. Series B: Biological Sciences, vol. 270, no. 1529, pp. 2173–2183.

    Google Scholar 

  • Grimmer, M., Eslamy, M., Gliech,S., & Seyfarth, A. (2012). A comparison of parallel-and serieselastic elements in an actuator for mimicking human ankle joint inwalking and running. In Robotics and Automation (ICRA), 2012IEEE International Conference on, IEEE, pp. 2463–2470.

    Google Scholar 

  • Hosoda, K., Rode, C., Siebert, B., Vanderborght, T., Weckx, M., & Lefeber, D. (2017). Actuation in legged locomotion, in Bioinspired Legged Locomotion, Elsevier, pp. 563–622.

    Google Scholar 

  • Hosoda, K., Takuma, T., Nakamoto, A., & Hayashi, S. (2008). Biped robot design powered by antagonistic pneumatic actuators for multi-modal loco-motion. Robotics and Autonomous Systems, 56(1), 46–53.

    Article  Google Scholar 

  • Hurst, J. (2019). Walk this way: To be useful around people, robots need to learn how to move like we do. IEEE Spectrum, 56(3), 30–51.

    Article  Google Scholar 

  • Klute, G. K., Czerniecki, J. M., & Hannaford, B. (1999). McKibben artificial muscles: Pneumatic actuators with biomechanical intelligence. In Advanced Intelligent Mechatronics, 1999. Proceedings. 1999 IEEE/ASME International Conference on, IEEE, pp. 221–226.

    Google Scholar 

  • Komi, P. V. (2008). Stretch-shortening cycle. Strength and Power in Sport, 3, 184–202.

    Google Scholar 

  • Mathijssen, G., Lefeber, D., & Vanderborght, B. (2015). Variable recruitment of parallel elastic elements: Series-parallel elastic actuators (spea) with dephased mutilated gears. IEEE/ASME Transactions on Mechatronics, 20(2), 594–602.

    Article  Google Scholar 

  • Nelson, G., Saunders, A., Neville, N., Swilling, B., Bondaryk, J., Billings, D., et al. (2012). Petman: A humanoid robot for testing chemical protective clothing. Journal of the Robotics Society of Japan, 30(4), 372–377.

    Article  Google Scholar 

  • Okunaka, R., Ikemoto, S., & Hosoda, K. (2018). A new concept of pneumatic tactile sensor using pressure wave propagation in a soft chamber. In 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2018, pp. 1809–1813.

    Google Scholar 

  • Pratt, J. E., & Krupp, B. T. (2004). Series elastic actuators for legged robots, in Defense and Security. International Society for Optics and Photonics, 135–144.

    Google Scholar 

  • Pratt, G. A., & Williamson, M. M. (1995). Series elastic actuators. In 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems, Los Alamitos, Calif. IEEE Computer Society Press, pp. 399–406.

    Google Scholar 

  • Raibert, M., Blankespoor, K., Nelson, G., Playter, R., & Team, T. B. (2008) Bigdog, the rough-terrain quadruped robot, in Proceedings of the 17th World Congress, Proceedings Seoul, Korea, pp. 10,822–10,825.

    Google Scholar 

  • Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., & Fujimura, K. (2002). The intelligent ASIMO: System overview and integration, in Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, IEEE, 2002, pp. 2478–2483.

    Google Scholar 

  • Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F., & Caldwell, D. G. (2011). Design of HyQ-a hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, p. 0 959 651 811 402 275.

    Google Scholar 

  • Sharbafi, M. A., Rode, C., Kurowski, S., Scholz, D., Möckel, R., Radkhah, K., Zhao, G., Rashty, A. M., von Stryk, O., & Seyfarth, A. (2016) A new biarticular actuator design facilitates control of leg function in biobiped3. Bioinspiration & Biomimetics, 11(4), 046 003.

    Google Scholar 

  • Sharbafi, M. A., & Seyfarth, A. (2017). How locomotion sub-functions can control walking at different speeds? Journal of Biomechanics, 53, 163–170.

    Article  Google Scholar 

  • Sharbafi, M., Shin, H., Zhao, G., Hosoda, K., & Seyfarth, A. (2017). “Electric- pneumatic actuator: A new muscle for locomotion,” in Actuators. Multi-disciplinary Digital Publishing Institute, 6, 30.

    Google Scholar 

  • Sharbafi, M. A., Barazesh, H., Iranikhah, M., & Seyfarth, A. (2018). Leg force control through biarticular muscles for human walking assistance. Frontiers in Neurorobotics, 12, 39.

    Article  Google Scholar 

  • Van Ham, R., Vanderborght, B., Van Damme, M., Verrelst, B., & Lefeber, D. (2007). MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot. Robotics and Autonomous Systems, 55(10), 761–768.

    Article  Google Scholar 

  • Vanderborght, B., Albu-Schaeffer, A.,Bicchi, A., Burdet, E., Cald- well, D. G., Carloni, R., Catalano,M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein,M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi,M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., vanDamme, M., van Ham, R., Visser, L. C., & Wolf, S. (2013). Variableimpedance actuators: A review. Robotics and AutonomousSystems, 61(12), 1601–1614.

    Google Scholar 

  • Verrelst, B., Van Ham, R., Vanderborght, B., Daerden, F., Lefeber, D., & Vermeulen, J. (2005). The pneumatic biped “Lucy” actuated with pleated pneumatic artificial muscles. Autonomous Robots, 18(2), 201–213.

    Article  Google Scholar 

  • Wisse, M., & Van der Linde, R. Q. (2007). Delft pneumatic bipeds. Springer Science & Business Media, Vol. 34.

    Google Scholar 

  • Zhao, G., Sharbafi, M., Vlutters, M., Van Asseldonk, E., & Seyfarth, A. (2017). Template model inspired leg force feedback based control can assist human walking. In 2017 International Conference on Rehabilitation Robotics (ICORR), IEEE, pp. 473–478.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maziar Ahmad Sharbafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad Sharbafi, M., Mohammadi Nejad Rashty, A. (2021). Hybrid Electric-Pneumatic Actuator. In: Beckerle, P., Sharbafi, M.A., Verstraten, T., Pott, P.P., Seyfarth, A. (eds) Novel Bioinspired Actuator Designs for Robotics. Studies in Computational Intelligence, vol 888. Springer, Cham. https://doi.org/10.1007/978-3-030-40886-2_6

Download citation

Publish with us

Policies and ethics