Skip to main content

Ensemble Classification Approach for Cancer Prognosis and Prediction

  • Conference paper
  • First Online:
Biologically Inspired Techniques in Many-Criteria Decision Making (BITMDM 2019)

Abstract

Gene expression data mostly available as cancer data have major challenges such as analyze, pattern matching and classification. Sometime task become more complex with large number of genes and small samples are available with noise and redundant information. Meaningful correlated information from dataset is the first and most important steps to be extracted for better diagnosis through artificial intelligence (AI). Accordingly, recent work for AI based classification and prognosis are focused in two steps process that is: (a) Feature extraction, and, (b) Ensemble Classification. Feature extraction will help in eliminating redundant and irrelevant genes, whereas ensemble classifier will help to optimize the accuracy. In this paper, we use double RBF kernel function for feature selection and novel fusion-procedure for enhance the performance of three base classifiers i.e., K Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP) and Decision Tree (DT). Training of classifier is implemented based on k-fold cross validation techniques. The predicted accuracy of the proposed model has been compared with recent fusion methods such as Majority Voting, Distribution Summation and Dempster–Shafer on six benchmark cancer datasets. Experiment evaluation and result analysis gives promising and better performance than other fusion strategies, aiming at our goal-functions. Wisconsin Breast prognosis dataset is used with the proposed model for gene selection and prognosis prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deng, L., Yu, D., et al.: Deep learning: methods and applications. Found. Trends Sig. Process. 7(3–4), 197–387 (2014)

    Article  MathSciNet  Google Scholar 

  2. Dara, S., Tumma, P.: Feature extraction by using deep learning: a survey. In: Proceedings of the 2nd International Conference on Electronics, Communication and Aerospace Technology (ICECA 2018), pp. 1795–1801 (2018)

    Google Scholar 

  3. Cong, J., Wei, B., He, Y., Yin, Y., Zheng, Y.: A selective ensemble classification method combining mammography images with ultrasound images for breast cancer diagnosis. Comput. Math. Methods Med. 7, 1:7 (2017)

    Google Scholar 

  4. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems (Gray, J. (Series Editor)), 2nd edn. Morgan Kaufmann Publishers, Burlington (2006)

    Google Scholar 

  5. Lee, Z.-J.: An integrated algorithm for gene selection and classification applied to microarray data of ovarian cancer. Artif. Intell. Mach. 42(1), 81–93 (2008)

    Article  Google Scholar 

  6. Colin, C., Nello, C.: Simple learning algorithms for training support vector machines. Technical report, University of Bristol, pp. 1–29 (1998)

    Google Scholar 

  7. Cooper, G.F., Herskovita, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)

    Google Scholar 

  8. Cortes, C., Vapnik, V.: Support vector networks. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  9. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7(3–4), 601–620 (2000)

    Article  Google Scholar 

  10. Xu, L., Krzyzak, A., Suen, C.: Methods of combining multiple classifiers and their applications to hand written numerals. IEEE Trans. Syst. Man Cybern. 22(3), 418–435 (1992)

    Article  Google Scholar 

  11. Hansen, L., Salamon, P.: Neural network ensembles. IEEE Trans. Pattern Anal. Mach. Intell. 12, 993–1001 (1990)

    Article  Google Scholar 

  12. Hazem, J.M., Bakry, E.: An efficient algorithm for pattern detection using combined classifiers and data fusion. Inf. Fusion 11, 133–148 (2010)

    Article  Google Scholar 

  13. Kilic, E., Alpaydin, E.: Learning the areas of expertise of classifiers in an ensemble. Procedia Comput. Sci. 3, 74–82 (2011)

    Article  Google Scholar 

  14. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

    Article  Google Scholar 

  15. Mangai, U.G., Samanta, S., Das, S., Chowdhury, P.R.: A survey of fusion and feature fusion strategies for pattern classification. IETE Tech. Rev. 27(4), 293–307 (2010)

    Article  Google Scholar 

  16. Rokach, L.: Ensemble methods for classifiers. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 957–980. Springer, Boston (2005)

    Chapter  Google Scholar 

  17. Senapati, R., Shaw, K., Mishra, S., Mishra, D.: A novel approach for missing value imputation and classification of microarray dataset. Procedia Eng. 38, 1067–1071 (2012)

    Article  Google Scholar 

  18. Liu, S., Xu, C., Zhang, Y., Liu, J., Yu, B., Liu, X., Dehmer, M.: Feature selection of gene expression data for cancer classification using double RBF-kernels. BMC Bioinformatics 19, 396 (2018)

    Article  Google Scholar 

  19. Phienthrakul, T., Kijsirikul, B.: Evolutionary strategies for multi-scale radial basis function kernels in support vector machines. In: Conference on Genetic and Evolutionary Computation, vol. 14, no. 7, pp. 905–911 (2005)

    Google Scholar 

  20. Bernhard, S., Alexander, J.S.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  21. Chen, H., Zhang, Y., Gutman, I.: A kernel-based clustering method for gene selection with gene expression data. J. Biomed. Inform. 62, 12–20 (2016). https://doi.org/10.1016/j.jbi.2016.05.007

    Article  Google Scholar 

  22. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 417–435 (2012)

    Article  Google Scholar 

  23. Rosenblatt, F.: Principles of neurodynamics. perceptrons and the theory of brain mechanisms (No. VG-1196-G-8). Cornell Aeronautical Lab Inc., Buffalo, NY (1961)

    Google Scholar 

  24. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L., PDP Research Group (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundation. MIT Press, Cambridge (1986)

    Google Scholar 

  25. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Signals Systems 2(4), 303–314 (1989)

    Article  MathSciNet  Google Scholar 

  26. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall (1998). ISBN 0-13-273350-1

    Google Scholar 

  27. Kamiński, B., Jakubczyk, M., Szufel, P.: A framework for sensitivity analysis of decision trees. CEJOR 26(1), 135–159 (2017). https://doi.org/10.1007/s10100-017-0479-6

    Article  MathSciNet  MATH  Google Scholar 

  28. Wolberg, W.H., Mangasarian, O.: UCI Machine Learning Repository. http://archive.ics.uci.edu/ml. Irvine

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar Maurya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maurya, R.K., Yadav, S.K., Rishabh (2020). Ensemble Classification Approach for Cancer Prognosis and Prediction. In: Dehuri, S., Mishra, B., Mallick, P., Cho, SB., Favorskaya, M. (eds) Biologically Inspired Techniques in Many-Criteria Decision Making. BITMDM 2019. Learning and Analytics in Intelligent Systems, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-39033-4_12

Download citation

Publish with us

Policies and ethics