Skip to main content

Practical Privacy Measures in Blockchains

  • Chapter
  • First Online:
Decentralised Internet of Things

Part of the book series: Studies in Big Data ((SBD,volume 71))

  • 1210 Accesses

Abstract

The Blockchain Technology has recently been a hot topic proposed in many industries such as Financial, Healthcare, Business, E-Government, Education, etc. The Blockchain can simply be defined as a distributed database or public ledger that contains records of all digital transactions/events that have transpired amongst the parties involved. The technology itself is comprised of other more fundamental knowledge namely: cryptography, distributed system, network and game theory. Thus at the more basic level, the blockchain components include functions such as hash, asymmetric cryptography, digital signatures, peer-to-peer network protocols and some elements of a “proof of correctness/work” resulting from a game-like setup. Against a backdrop of such a mixture of functions, “privacy” has emerged to be one of the new challenges in any Blockchain implementation. This research aims to investigate the techniques that can be used to successfully manage privacy in the blockchains. The work has identified the requirements and analyzed the techniques that can be used. Finally, the work was also extended to an analysis on the performance evaluation of blockchains in managing privacy albeit focusing on a specific blockchain—the Hyperledger fabric platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1.  Grech, A. and Camilleri, A. F.: Blockchain in Education. In: Inamorato dos Santos, A. (ed.) EUR 28778 EN (2017). https://www.doi.org/10.2760/60649

  2. Ackerman, A.,Chang, A., Diakun-Thibault, N., Forni, L., Landa, F., Mayo, J., van Riezen, R.: Blockchain and Health IT: Algorithms, Privacy and Data (August 8, 2016). Project PharmOrchard of MIT’s Experimental Learning “MIT FinTech: Future Commerce.”, White Paper August 2016. Available at SSRN: https://ssrn.com/abstract=3209023

  3. Duan, Z, Mao, H., Chen, Z., Bai, X., Hu, K., Talpin, J.-P.: Formal modeling and verification of blockchain system, vol. 86, pp. 231–235 (2018)

    Google Scholar 

  4. Wu, J., Tran, N.K.: Application of blockchain technology in sustainable energy systems: an overview. Sustain 10(9), 1–22 (2018)

    Google Scholar 

  5. Cui, G., Shi, K., Qin, Y., Liu, L., Qi, B., Li, B.: Application of block chain in multi-level demand response reliable mechanism. In: 2017 3rd International Conference on Information Management (ICIM), pp. 337–341 (2017)

    Google Scholar 

  6. Fukumitsu, M., Hasegawa, S., Iwazaki, J., Sakai, M., Takahashi, D.: A proposal of a secure P2P-type storage scheme by using the secret sharing and the blockchain. In: Proceedings of the International Conference on Advanced Information Networking and Applications (AINA), pp. 803–810 (2017)

    Google Scholar 

  7. Yuan, Y., Wang, F.Y.: Towards blockchain-based intelligent transportation systems. In: IEEE International Conference on Intelligent Transportation Systems (ITSC), pp. 2663–2668 (2016)

    Google Scholar 

  8. Zheng, Z., Xie, S., Dai, H.N., Wang, H.: Blockchain challenges and opportunities: a survey. Work Pap.–2016, December 2016

    Google Scholar 

  9. Baliga, A.: Understanding blockchain consensus models. Whitepaper, April, pp. 1–14 (2017)

    Google Scholar 

  10. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain technology: architecture, consensus, and future trends. In: Proceeding of 2017 IEEE 6th International Congress on Big Data (BigData Congress), pp. 557–564 (2017)

    Google Scholar 

  11. Prashanth Joshi, A., Han, M., Wang, Y.: A survey on security and privacy issues of blockchain technology. Math. Found. Comput 1(2), 121–147 (2018)

    Google Scholar 

  12. Le, T., Mutka, M.W.: Capchain: a privacy preserving access control framework based on blockchain for pervasive environments. In: Proceedings of 2018 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 57–64 (2018)

    Google Scholar 

  13. Lin, I.-C., Liao, T.-C.: A survey of blockchain security issues and challenges. Int. J. Netw. Secur. 1919(55), 653–659 (2017)

    Google Scholar 

  14. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.-L.: Blockbench: a framework for analyzing private blockchains. In: Proceedings of the 2017 ACM International Conference on Management of Data. ACM (2017)

    Google Scholar 

  15. Fabian, B., Ermakova, T., Krah, J., Lando, E., Ahrary, N.: Adoption of security and privacy measures in bitcoin–stated and actual behavior (2018). Available at SSRN:https://ssrn.com/abstract=3184130

  16. Feng, Q., He, D., Zeadally, S., Khan, M.K., Kumar, N.: A survey on privacy protection in blockchain system. J. Netw. Comput. Appl. 126, 45–58 (2019)

    Article  Google Scholar 

  17. Duan, B., Zhong, Y., Liu, D.: Education application of blockchain technology: learning outcome and meta-diploma. In: Proceedings of the International Conference on Parallel and Distributed Systems (ICPADS), December 2017, pp. 814–817 (2018)

    Google Scholar 

  18. Cheng, R., Zhang, F., Kos, J., He, W., Hynes, N., Johnson, N., ... & Song, D.: Ekiden: A platform for confidentiality-preserving, trustworthy, and performant smart contracts. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P), pp. 185–200. IEEE (2019, June)

    Google Scholar 

  19. Axon, L., Goldsmith, M., Creese, S.: Privacy requirements in cybersecurity applications of blockchain, vol. 111, 1st edn. Elsevier (2018)

    Google Scholar 

  20. Ruffing, T., Moreno-sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin mixing for bitcoin—bookmetrix analysis. In: European Symposium on Research in Computer Security (ESORICS), vol. 8713, pp. 1–15 (2014)

    Google Scholar 

  21. Chen, J., Yao, S., Yuan, Q., He, K., Ji, S., Du, R.: CertChain: public and efficient certificate audit based on blockchain for TLS connections. In: Proceedings of the IEEE INFOCOM, April 2018, pp. 2060–2068 (2018)

    Google Scholar 

  22. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system, p. 9. Www.Bitcoin.Org (2008)

  23. Turkanovic, M., Holbl, M., Kosic, K., Hericko, M., Kamisalic, A.: EduCTX: a blockchain-based higher education credit platform. IEEE Access 6, 1–20 (2018)

    Google Scholar 

  24. Gervais, A., Karame, G.O., Wüst, K., Ritzdorf, H.: On the security and performance of proof of work blockchains Vasileios Glykantzis Srdjaň Capkun. Bitcoin.org (2017)

    Google Scholar 

  25. Garay, J.A.: The bitcoin backbone protocol : analysis and applications the bitcoin backbone protocol : analysis and applications, June 2017, pp. 1–44 (2015)

    Google Scholar 

  26. Yang, D., Gavigan, J., Hearn, Z.W.: Survey of confidentiality and privacy preserving technologies for blockchains, pp. 1–32 (2016)

    Google Scholar 

  27. Stuart, P.: Confidentiality in Private Blockchain (August 8, 2016). Project “Kadena: Kuro - Private Blockchain.”, White Paper August 2016. Available at SSRN:https://www.kadena.io/

  28. Chang, P., Yang, C., Yang, C., Hwang, M.: An academic transcript system embedded with blockchains (2018)

    Google Scholar 

  29. Ouaddah, A., Elkalam, A.A., Ouahman, A.A.: Europe and MENA Cooperation Advances in Information and Communication Technologies, vol. 520, pp. 523–533. Springer, Cham (2017)

    Google Scholar 

  30. Ikeda, K.: Security and privacy of blockchain and quantum computation, 1st ed., vol. 111. Elsevier (2018)

    Google Scholar 

  31. Bhowmik, D., Feng, T.: The multimedia blockchain: a distributed and tamper-proof media transaction framework. In: International Conference on Digital Signal Processing (DSP), 2017 August, November 2017

    Google Scholar 

  32. Fan, K., Ren, Y., Wang, Y., Li, H., Yang, Y.: Blockchain-based efficient privacy preserving and data sharing scheme of content-centric network in 5G. IET Commun. 12(5), 527–532 (2018)

    Article  Google Scholar 

  33. Colloquium, J.N., Zrt, B.E.: Blockchain: solving the privacy and research availability tradeoff for EHR data. In: IEEE 30th Jubilee Neumann Colloquium, pp. 135–140 (2017)

    Google Scholar 

  34. Ali, A., Afzal, M.M.: Confidentiality in blockchain. Int. J. Eng. Sci. Invent. 7(1), 50–52 (2018)

    Google Scholar 

  35. Wang, R., He, J., Liu, C., Li, Q., Tsai, W.T., Deng, E.: A privacy-aware PKI system based on permissioned blockchains. In: Proceedings of IEEE International Conference on Software Engineering and Service Science (ICSESS) November 2018, pp. 928–931 (2019)

    Google Scholar 

  36. Chen, Y., Xie, H., Lv, K., Wei, S., Hu, C.: DEPLEST: a blockchain-based privacy-preserving distributed database toward user behaviors in social networks. Inf. Sci. (NY) 501, 100–117 (2019)

    Article  Google Scholar 

  37. Casino, F., Dasaklis, T.K., Patsakis, C.: A systematic literature review of blockchain-based applications: current status, classification and open issues. Telematics Inform 36, 55–81 (2018)

    Google Scholar 

  38. Raikwar, M., Gligoroski, D., Kralevska, K.: SoK of used cryptography in blockchain (2019)

    Google Scholar 

  39. Chaum, D.: Untraceable electronic mail, return addresses and digital pseudonyms. In Secure Electronic Voting, pp. 211–219. Springer, Boston, MA (2003)

    Article  Google Scholar 

  40. Zhang, R., Xue, R., Liu, L.: Security and privacy on blockchain, 1(1) (2019)

    Google Scholar 

  41. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J. A., & Felten, E. W. (2014, March). Mixcoin: Anonymity for Bitcoin with accountable mixes. In International Conference on Financial Cryptography and Data Security, pp. 486–504. Springer, Berlin, Heidelberg

    Google Scholar 

  42. Chaum, D., Van Heyst, E.: Group signatures. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 547, No. iii, pp. 257–265. LNCS (1991)

    Google Scholar 

  43. Wood, G., et al.: How to leak a secret. J. Br. Blockchain Assoc., vol. 2018, November 25, 2016, p. Github site to create pdf, 2016

    Google Scholar 

  44. Van Saberhagen, N.: CryptoNote v 2.0. Self-published, pp. 1–20 (2013)

    Google Scholar 

  45. Logarithms, D.: A public key cryptosystem and a signature based on discrete logarithms, vol. I, pp. 10–18 (1976)

    Google Scholar 

  46. Abidin, A.S.Z., Yusuff, R.M., Bakar, N.A., Awi, M.A., Zulkifli, N., Muslimen, R.: Public-key cryptosystems based on composite degree residuosity classes. In: Lecture Notes in Electrical Engineering (LNEE), vol. 130, pp. 285–299 (2013)

    Google Scholar 

  47. Sahai, A., Waters, B.: Fuzzy identity-based encryption BT. In: Advances in Cryptology (EUROCRYPT 2005), vol. 3494, Chapter 27, p. 557 (2005)

    Google Scholar 

  48. Chase, M.: Multi-authority attribute based encryption. In: Proceedings of the 4th Conference Theory Cryptography, vol. 4392, pp. 515–534 (2007)

    Google Scholar 

  49. Lewko, A., Waters, B.: Decentralizing attribute-based encryption, vol. 2, No. subaward 641, pp. 568–588 (2011)

    Google Scholar 

  50. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8043, PART 2, pp. 479–499. LNCS (2013)

    Google Scholar 

  51. Bogetoft, P., et al: Secure multiparty computation goes live. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5628, pp. 325–343. LNCS (2009)

    Google Scholar 

  52. Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, Ł.: Secure multiparty computations on bitcoin. In: Proceedings of the IEEE Symposium on Security and Privacy, pp. 443–458 (2014)

    Google Scholar 

  53. Srichaiyo, T., Hjertén, S.: Enigma: decentralized computation platform with guaranteed privacy. J. Liq. Chromatogr 12(5), 809–825 (2015)

    Article  Google Scholar 

  54. Benhamouda, F., Halevi, S., Halevi, T.: Supporting private data on Hyperledger fabric with secure multiparty computation. IBM J. Res. Dev. 63(2), 1–8 (2019)

    Google Scholar 

  55. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (2005)

    Article  MathSciNet  Google Scholar 

  56. Essaf, F.: Privacy protection issues in blockchain technology, pp. 124–131 (2019)

    Google Scholar 

  57. Pongnumkul, S., Siripanpornchana, C., Thajchayapong, S.: Performance analysis of private blockchain platforms in varying workloads. In: 2017 26th International Conference on Computer Communication and Networks (ICCCN), pp. 1–6. IEEE (July, 2017)

    Google Scholar 

  58. Ma, C., Kong, X., Lan, Q., Zhou, Z.: The privacy protection mechanism of Hyperledger fabric and its application in supply chain finance. Cybersecurity 2(1), 15 (2019)

    Google Scholar 

  59. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, No. 1. ACM (2018)

    Google Scholar 

  60. Vukolić, M.: Rethinking permissioned blockchains. In: Proceedings of the ACM Workshop on Blockchain, Cryptocurrencies and Contracts (BCC), pp. 3–7 (2017)

    Google Scholar 

Download references

Acknowledgements

Authors would like to sincerely thank Universiti Utara Malaysia (UUM), International Islamic University Malaysia (IIUM), Malaysia and Ministry of Higher Education, Iraq for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar S. Saleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saleh, O.S., Ghazali, O., Idris, N.B. (2020). Practical Privacy Measures in Blockchains. In: Khan, M., Quasim, M., Algarni, F., Alharthi, A. (eds) Decentralised Internet of Things. Studies in Big Data, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-030-38677-1_2

Download citation

Publish with us

Policies and ethics