Skip to main content

FSO: Issues, Challenges and Heuristic Solutions

  • Conference paper
  • First Online:
Computational Vision and Bio-Inspired Computing ( ICCVBIC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1108))

  • 1969 Accesses

Abstract

Most dominant and viable advanced technology for broadband wireless applications is free space communication (FSO) that provides unlicensed spectrum, very high data rate and has no electromagnetic interference. Atmospheric turbulences has great effect on FSO link and quality of light beam gets Detroit while propagating to long distance through the atmosphere. The signal exhibits a random fluctuation in the existence of atmospheric turbulence which degrades functioning of system. Bit Error Rate (BER), Outage Probability (OP) and Quality Factor are most important factors that decide quality of transmission of any data. Free space optical communication concept is introduced in this paper along with its issues, challenges and heuristic solutions. The findings in the paper demonstrate deployment of different methods for enhancing the system performance. It is seen that by using heuristic solutions such as FSO-WDM, hybrid RF/FSO better results with respect to BER can be obtained in comparison to simple FSO for high speed wireless communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kaur, G., Singh, H.: Simulative Investigation of 32x5 Gb/s DWDM-FSO system using semiconductor optical amplifier under different weather conditions. Int. J. Adv. Res. Comput. Sci. 8(4), 392–397 (2017)

    Google Scholar 

  2. Mazin, A.A.A.: Performance analysis of WDM-FSO link under turbulence channel. World Sci. News 50, 160–173 (2016)

    Google Scholar 

  3. Elgala, H., Mesleh, R., Haas, H.: Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun. Mag. 49(9), 56–62 (2011). https://doi.org/10.1109/mcom.2011.6011734

    Article  Google Scholar 

  4. Esmail, M.A., Ragheb, A., Fathallah, H., Alouini, M.S.: Investigation and demonstration of high speed full-optical hybrid FSO/fiber communication system under light sand storm condition. IEEE Photon. J. 9(1) (2017). Article no. 7900612

    Article  Google Scholar 

  5. Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tutors. 16(4), 2231–2258 (2014)

    Article  Google Scholar 

  6. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications: System and Channel Modeling with Matlab. CRC Press Taylor and Francis Group, Boca Raton (2013)

    Google Scholar 

  7. Luong, D.A., Truong, C.T., Pham, A.T.: Effect of APD and thermal noises on the performance of SC-BPSK/FSO systems over turbulence channels. In: 18th Asia-Pacific Conference on Communications (APCC), pp. 344–349 (2012)

    Google Scholar 

  8. Ramirez-Iniguez, R., Idrus, S.M., Sun, Z.: Atmospheric transmission limitations. In: Optical Wireless Communications: IR for Wireless Connectivity, p. 40. Taylor & Francis Group, LLC, London (2008)

    Google Scholar 

  9. Li, J., Liu, J.Q., Taylor, D.P.: Optical communication using subcarrier PSK intensity modulation through atmospheric turbulence channels. IEEE Trans. Commun. 55, 1598–1606 (2007)

    Article  Google Scholar 

  10. Popoola, W.O., Ghassemlooy, Z.: BPSK subcarrier intensity modulated free space optical communication in atmospheric turbulence. J. Light Wave Technol. 27, 967–973 (2009)

    Article  Google Scholar 

  11. Fried, D.L.: Optical heterodyne detection of an atmospherically distortion wave front. Proc. IEEE 55, 57–77 (1967)

    Article  Google Scholar 

  12. Alkholidi, A., Altowij, K.: Effect of clear atmospheric turbulence on quality of free space optical communications in Western Asia. In: Das, N. (ed.) Optical Communications Systems (2012)

    Google Scholar 

  13. Majumdar, A.K., Ricklin, J.C.: Free Space Laser Communications: Principles and Advances. Springer, Heidelberg (2008). ISBN-13 978-0-387-28652-5

    Book  Google Scholar 

  14. http://www.laseroptronics.com/index.cfm/id/57-66.htm

  15. Andrews, L.: Atmospheric Optics. SPIE Optical Engineering Press, Bellingham (2004)

    Google Scholar 

  16. Andrews, L., Phillips, R., Hopen, C.: Laser Beam Scintillation with Applications. SPIE Optical Engineering Press, Bellingham (2001)

    Book  Google Scholar 

  17. Gagliardi, R., Karp, S.: Optical Communications. Wiley, New York (1995)

    Google Scholar 

  18. Kim, I., Mcarthur, B., Korevaar, E.: Comparison of laser beam propagation at 785 and 1550 nm in fog and haze for optical wireless communications. In: Proceedings of SPIE, vol. 4214, pp. 26–37 (2001)

    Google Scholar 

  19. Akiba, M., Ogawa, K., Walkamori, K., Kodate, K., Ito, S.: Measurement and simulation of the effect of snow fall on free space optical propagation. Appl. Opt. 47(31), 5736–5743 (2008)

    Article  Google Scholar 

  20. Achour, M.: Simulating free space optical communication; part I, rain fall attenuation. In: Proceedings of SPIE, vol. 3635 (2002)

    Google Scholar 

  21. Bouchet, O., Marquis, T., Chabane, M., Alnaboulsi, M., Sizun, H.: FSO and quality of service software prediction. In: Proceedings of SPIE, vol. 5892, pp. 1–12 (2005)

    Google Scholar 

  22. Niaz, A., Qamar, F., Ali, M., Farhan, R., Islam, M.K.: Performance analysis of chaotic FSO communication system under different weather conditions. Trans. Emerg. Telecommun. Technol. (2019). https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3486

  23. Sarangal, H., Singh, A., Malhotra, J., Thapar, S.S.: Performance evaluation of hybrid FSO-SACOCDMA system under different weather conditions. J. Opt. Commun. (2018). https://doi.org/10.1515/joc-2018-0172

  24. Chatzidiamantis, N.D., Karagiannidis, G.K., Kriezis, E.E., Matthaiou, M.: Diversity combining in hybrid RF/FSO systems with PSK modulation. In: IEEE International Conference on Communications (2011)

    Google Scholar 

  25. Nadeem, F., Kvicera, V., Awan, M.S., Leitgeb, E., Muhammad, S.S., Kandus, G.: Weather effects on hybrid FSO/RF communication link. IEEE J. Sel. Areas Commun. 27(9), 1687–1697 (2009)

    Article  Google Scholar 

  26. Ghoname, S., Fayed, H.A., El Aziz, A.A., Aly, M.H.: Performance evaluation of an adaptive hybrid FSO/RF communication system: impact of weather attenuation. Iran. J. Sci. Technol. Trans. Electr. Eng. (2019). https://doi.org/10.1007/s40998-019-00244-0

    Article  Google Scholar 

  27. Alma, H., Al-Khateeb, W.: Effect of weather conditions on quality of free space optics links (with focus on Malaysia). In: 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, pp. 1206–1210 (2008). https://doi.org/10.1109/ICCCE.2008.4580797

  28. Chaudhary, S., Amphawan, A.: The role and challenges of free-space systems. J. Opt. Commun. 35, 327–334 (2014). https://doi.org/10.1515/joc-2014-0004

    Article  Google Scholar 

  29. Kim, I.I., Korevaar, E.: Availability of free space optic (FSO) and hybrid FSO/RF systems. Light pointe Tech report. http://www.opticalaccess.com

  30. Kaushal, H., Kaddoum, G.: Optical communication in space: challenges and mitigation techniques. IEEE Commun. Surv. Tutor. https://doi.org/10.1109/comst.2016.2603518

    Article  Google Scholar 

  31. Sarkar, D., Metya, S.K.: Effects of atmospheric weather and turbulence in MSK based FSO communication system for last mile users. Telecommun. Syst. (2019). https://doi.org/10.1007/s11235-019-00602-7

    Article  Google Scholar 

  32. Singh, N.: To analyze the aftermath of using hybrid RF/FSO link over FSO link under various turbulence of atmosphere. Int. J. Eng. Res. Technol. (IJERT) 8(05) (2019). http://www.ijert.org, ISSN 2278-0181 IJERTV8IS050421 (This work is licensed under a Creative Commons Attribution 4.0 International License)

  33. Majumdar, A.K., Ricklin, J.C.: Free-Space Laser Communications Principles and Advances. Springer, New York (2008)

    Book  Google Scholar 

  34. David, F.: Scintillation loss in free-space optic systems. In: LASER 2004, San Jose, USA, vol. 5338 (2004)

    Google Scholar 

  35. Henniger, H., Wilfert, O.: An introduction to free space optical communications. Radio Eng. 19(2), 203–212 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rai, S., Garg, A.K. (2020). FSO: Issues, Challenges and Heuristic Solutions. In: Smys, S., Tavares, J., Balas, V., Iliyasu, A. (eds) Computational Vision and Bio-Inspired Computing. ICCVBIC 2019. Advances in Intelligent Systems and Computing, vol 1108. Springer, Cham. https://doi.org/10.1007/978-3-030-37218-7_122

Download citation

Publish with us

Policies and ethics