Skip to main content

TemporalNode2vec: Temporal Node Embedding in Temporal Networks

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 881))

Included in the following conference series:

Abstract

The goal of graph embedding is to learn a representation of graphs vertices in a latent low-dimensional space in order to encode the structural information that lies in graphs. While real-world networks evolve over time, the majority of research focuses on static networks, ignoring local and global evolution patterns. A simplistic approach consists of learning nodes embeddings independently for each time step. This can cause unstable and inefficient representations over time.

We present a novel dynamic graph embedding approach that learns continuous time-aware node representations. Overall, we demonstrate that our method improves node classification tasks comparing to previous static and dynamic approaches as it achieves up to 14% gain regarding to the F1 score metric. We also prove that our model is more data-efficient than several baseline methods, as it affords to achieve good performances with a limited number of vertex representation features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    [25] proved its inefficiency comparing to later graph embedding methods.

  2. 2.

    We use DynamicTriad [25] derived version of ArnetMiner [21].

  3. 3.

    https://www.yelp.com/dataset/challenge.

  4. 4.

    https://tianchi.aliyun.com/competition/entrance/231576/information.

  5. 5.

    More tuning of the hyper parameters (especially p and q) may improve edge reconstruction/prediction tasks results.

References

  1. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems, pp. 585–591 (2002)

    Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Bhagat, S., Cormode, G., Muthukrishnan, S.: Node classification in social networks. In: Social Network Data Analytics, pp. 115–148. Springer (2011)

    Google Scholar 

  4. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 891–900. ACM (2015)

    Google Scholar 

  5. Cao, S., Lu, W., Xu, Q.: Deep neural networks for learning graph representations. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  6. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: HARP: hierarchical representation learning for networks. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  7. Firth, J.R.: A synopsis of linguistic theory, 1930-1955. Studies in Linguistic Analysis (1957)

    Google Scholar 

  8. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  9. Granata, D., Carnevale, V.: Accurate estimation of the intrinsic dimension using graph distances: unraveling the geometric complexity of datasets. Sci. Rep. 6, 31377 (2016)

    Article  Google Scholar 

  10. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)

    Google Scholar 

  11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  12. Kulkarni, V., Al-Rfou, R., Perozzi, B., Skiena, S.: Statistically significant detection of linguistic change. In: Proceedings of the 24th International Conference on World Wide Web, pp. 625–635. International World Wide Web Conferences Steering Committee (2015)

    Google Scholar 

  13. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization. In: Advances in Neural Information Processing Systems, pp. 2177–2185 (2014)

    Google Scholar 

  14. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  15. Mahdavi, S., Khoshraftar, S., An, A.: dynnode2vec: scalable dynamic network embedding. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 3762–3765. IEEE (2018)

    Google Scholar 

  16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  17. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-time dynamic network embeddings. In: Companion of the The Web Conference 2018 on The Web Conference 2018, pp. 969–976. International World Wide Web Conferences Steering Committee (2018)

    Google Scholar 

  18. Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1105–1114. ACM (2016)

    Google Scholar 

  19. Pearson, K.: The problem of the random walk. Nature 72(1867), 342 (1905)

    Article  Google Scholar 

  20. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

    Google Scholar 

  21. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998. ACM (2008)

    Google Scholar 

  22. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph kernels. J. Mach. Learn. Res. 11(Apr), 1201–1242 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM (2016)

    Google Scholar 

  24. Yao, Z., Sun, Y., Ding, W., Rao, N., Xiong, H.: Dynamic word embeddings for evolving semantic discovery. In: Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, pp. 673–681. ACM (2018)

    Google Scholar 

  25. Zhou, L., Yang, Y., Ren, X., Wu, F., Zhuang, Y.: Dynamic network embedding by modeling triadic closure process. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  26. Zhu, L., Guo, D., Yin, J., Ver Steeg, G., Galstyan, A.: Scalable temporal latent space inference for link prediction in dynamic social networks. IEEE Trans. Knowl. Data Eng. 28(10), 2765–2777 (2016)

    Article  Google Scholar 

  27. Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., Wu, J.: Embedding temporal network via neighborhood formation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2857–2866. ACM (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Haddad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haddad, M., Bothorel, C., Lenca, P., Bedart, D. (2020). TemporalNode2vec: Temporal Node Embedding in Temporal Networks. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_74

Download citation

Publish with us

Policies and ethics