Skip to main content

Discontinuous Integral Control for Systems with Arbitrary Relative Degree

  • Chapter
  • First Online:
Variable-Structure Systems and Sliding-Mode Control

Abstract

For systems with arbitrary relative degree, we propose a homogeneous controller capable of tracking a smooth but unknown reference signal, despite a Lipschitz continuous perturbation, and by means of a continuous control signal. The proposed control scheme consists of two terms: (i) a continuous and homogeneous state feedback and (ii) a discontinuous integral term. The state feedback term aims at stabilizing (in finite time) the closed-loop while the (discontinuous) integral term estimates the perturbation and the unknown reference signal in finite time and provides for perfect compensation in closed loop. By adding an exact and robust differentiator, we complete an output feedback scheme, when only the output is available for measurement. The global finite-time stability of the closed-loop system and its insensitivity with respect to the Lipschitz continuous perturbations are proved in detail using several (smooth) homogeneous Lyapunov functions for different versions of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Since uniqueness of solutions is, in general, not assumed, this means that all trajectories starting at any initial point \(\left( t_{0},\,x_{0}\right) \) are uniformly stable and uniformly attractive. This concept is sometimes referred to as “strong stability”, in contrast to the “weak stability” which is valid only for some trajectory for every initial point.

  2. 2.

    A sketch of a proof of this fact is presented in Sect. 2.5.3.1 (see Remark 2.1).

  3. 3.

    This has been overseen in [28], where it is stated that \(\mathscr {W}\left( \overline{x}_{n+1}\right) \) is differentiable except at the origin, what is incorrect.

References

  1. Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer design and output feedback. SIAM J. Control Optim. 47(4), 1814–1850 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Astolfi, D., Praly, L.: Integral action in output feedback for multi-input multi-output nonlinear systems. IEEE Trans. Autom. Control 62(4), 1559–1574 (2017). April

    Article  MathSciNet  MATH  Google Scholar 

  3. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory, 2nd edn. Springer, New York (2005)

    Book  MATH  Google Scholar 

  4. Bernuau, E., Efimov, D., Perruquetti, W., Polyakov, A.: On an extension of homogeneity notion for differential inclusions. In: European Control Conference, Zurich, Switzerland (2013)

    Google Scholar 

  5. Bernuau, E., Efimov, D., Perruquetti, W., Polyakov, A.: On homogeneity and its application in sliding mode control. J. Frankl. Inst. 351(4), 1816–1901 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernuau, E., Efimov, D., Perruquetti, W., Polyakov, A.: Homogeneity of differential inclusions. In: Control, Robotics & Sensors, pp. 103–118. Institution of Engineering and Technology (2016)

    Google Scholar 

  7. Bernuau, E., Polyakov, A., Efimov, D., Perruquetti, W.: Verification of ISS, iISS and IOSS properties applying weighted homogeneity. Syst. Control Lett. 62(12), 1159–1167 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bhat, S.P., Bernstein, D.S.: Geometric homogeneity with applications to finite-time stability. Math. Control, Signals, Syst. 17(2), 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cruz-Zavala, E., Moreno, J.A.: Higher-order sliding mode control using discontinuous integral action. IEEE Trans. Autom. Control. (2019). https://doi.org/10.1109/TAC.2019.2956127

  10. Cruz-Zavala, E., Moreno, J.A.: Levant’s arbitrary order exact differentiator: a Lyapunov approach. IEEE Trans. Autom. Control 64(7), 3034–3039 (2019). July

    Article  MathSciNet  MATH  Google Scholar 

  11. Cruz-Zavala, E., Moreno, J.A.: Lyapunov functions for continuous and discontinuous differentiators. In: 10th IFAC Symposium on Nonlinear Control Systems NOLCOS 2016; IFAC-PapersOnLine 49(18), 660–665 (2016)

    Article  Google Scholar 

  12. Cruz-Zavala, E., Moreno, J.A.: Homogeneous high order sliding mode design: a Lyapunov approach. Automatica 80, 232–238 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deimling, K.: Multivalued Differential Equations. Walter de gruyter, Berlin (1992)

    Book  MATH  Google Scholar 

  14. Dorel, L., Levant, A.: On chattering-free sliding-mode control. In: 2008 47th IEEE Conference on Decision and Control, pp. 2196–2201 (2008)

    Google Scholar 

  15. Filippov, A.F.: Differential Equations with Discontinuous Righthand Side. Kluwer, Dordrecht (1988)

    Book  Google Scholar 

  16. Fridman, L., Levant, A.: Sliding Mode Control in Engineering, chapter 3. Marcel Dekker Ink, New York (2002)

    Google Scholar 

  17. Fridman, L., Moreno, J.A., Bandyopadhyay, B., Kamal, S., Chalanga, A.: Continuous Nested Algorithms: The Fifth Generation of Sliding Mode Controllers, vol. 24, pp. 5–35. Springer International Publishing, Cham (2015)

    Chapter  Google Scholar 

  18. Hahn, W.: Stability of Motion. Springer, Berlin (1967)

    Book  MATH  Google Scholar 

  19. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, London (1951)

    MATH  Google Scholar 

  20. Hermes, H.: Homogeneous coordinates and continuous asymptotically stabilizing feedback controls. In: Elaydi, S. (ed.) Differential Equations, Stability and Control. Lecture Notes in Pure and Applied Mathematics, vol. 127, pp. 249–260. Marcel Dekker Inc., New York (1991)

    Google Scholar 

  21. Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)

    MATH  Google Scholar 

  22. Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  23. Isidori, A.: Nonlinear Control Systems II. Springer, London (1999)

    Book  MATH  Google Scholar 

  24. Kamal, S., Chalanga, A., Moreno, J.A., Fridman, L., Bandyopadhyay, B.: Higher order super-twisting algorithm. In: 2014 13th International Workshop on Variable Structure Systems (VSS), pp. 1–5 (2014)

    Google Scholar 

  25. Kamal, S., Moreno, J.A., Chalanga, A., Bandyopadhyay, B., Fridman, L.M.: Continuous terminal sliding-mode controller. Automatica 69, 308–314 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Khalil, H.K.: Universal integral controllers for minimum-phase nonlinear systems. IEEE Trans. Autom. Control 45(3), 490–494 (2000). March

    Article  MathSciNet  MATH  Google Scholar 

  27. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice-Hall, New Jersey (2002)

    MATH  Google Scholar 

  28. Laghrouche, S., Harmouche, M., Chitour, Y.: Higher order super-twisting for perturbed chains of integrators. IEEE Trans. Autom. Control 62(7), 3588–3593 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Levant, A.: Universal single-input single-output (siso) sliding-mode controllers with finite-time. IEEE Trans. Autom. Control 46(9), 1447–1451 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Levant, A.: High-order sliding modes: differentiation and output-feedback control. Int. J. Control 76(9), 924–941 (2003)

    Article  MATH  Google Scholar 

  32. Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41, 823–830 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Levant, A.: Quasi-continuous high-order sliding-mode controllers. IEEE Trans. Autom. Control 50(11), 1812–1816 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Levant, A.: Exact differentiation of signals with unbounded higher derivatives. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5585–5590 (2006)

    Google Scholar 

  35. Levant, A.: Principles of 2-sliding mode design. Automatica 43(4), 576–586 (2007). April

    Article  MathSciNet  MATH  Google Scholar 

  36. Levant, A.: Globally convergent fast exact differentiator with variable gains. In: 2014 European Control Conference (ECC), pp. 2925–2930 (2014)

    Google Scholar 

  37. Levant, A., Alelishvili, L.: Integral high-order sliding modes. IEEE Trans. Autom. Control 52(7), 1278–1282 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Levant, A., Livne, M.: Exact differentiation of signals with unbounded higher derivatives. IEEE Trans. Autom. Control 57(4), 1076–1080 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Levant, A., Livne, M.: Weighted homogeneity and robustness of sliding mode control. Automatica 72, 186–193 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Levant, A., Livne, M.: Globally convergent differentiators with variable gains. Int. J. Control 91(9), 1994–2008 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mendoza-Avila, J., Moreno, J.A., Fridman, L.: An idea for Lyapunov function design for arbitrary order continuous twisting algorithms. In: 2017 IEEE 56th Annual Conference on Decision and Control (CDC), vol. 2018, pp. 5426–5431 (2017)

    Google Scholar 

  42. Mercado-Uribe, A., Moreno, J.A.: Discontinuous integral action for arbitrary relative degree in sliding-mode control. Automatica. Submitted (2019)

    Google Scholar 

  43. Mercado-Uribe, A., Moreno, J.A.: Full and partial state discontinuous integral control. In: 2nd IFAC Conference on Modelling, Identification and Control of Nonlinear Systems MICNON 2018; IFAC-PapersOnLine, 51(13), 573–578 (2018)

    Article  Google Scholar 

  44. Mercado-Uribe, A., Moreno, J.A.: Output feedback discontinuous integral controller for siso nonlinear systems. In: 2018 15th International Workshop on Variable Structure Systems (VSS), vol. 2018, pp. 114–119 (2018)

    Google Scholar 

  45. Moreno, J.A.: Discontinuous integral control for mechanical systems. In: 2016 14th International Workshop on Variable Structure Systems (VSS), pp. 142–147 (2016)

    Google Scholar 

  46. Moreno, J.A.: Chapter 8: Discontinuous integral control for systems with relative degree two. New Perspectives and Applications of Modern Control Theory; in Honor of Alexander S. Poznyak, pp. 187–218. Springer International Publishing (2018)

    Google Scholar 

  47. Moreno, J.A.: Exact differentiator with varying gains. Int. J. Control 91(9), 1983–1993 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control, pp. 2856–2861. Cancún, Mexico (2008)

    Google Scholar 

  49. Moreno, J.A., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control 57(4), 1035–1040 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Nakamura, H., Yamashita, Y., Nishitani, H.: Smooth Lyapunov functions for homogeneous differential inclusions. In: Proceedings of the 41st SICE Annual Conference, vol. 3, pp. 1974–1979 (2002)

    Google Scholar 

  51. Nakamura, N., Nakamura, H., Yamashita, Y., Nishitani, H.: Homogeneous stabilization for input affine homogeneous systems. IEEE Trans. Autom. Control 54(9), 2271–2275 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Orlov, Y.: Finite time stability of homogeneous switched systems. In: Proceedings of 42nd IEEE Conference on Decision and Control, vol. 4, pp. 4271–4276 (2003)

    Google Scholar 

  53. Orlov, Y.V.: Discontinuous Systems: Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions. Springer, Berlin (2009)

    MATH  Google Scholar 

  54. Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field. Syst. Control Lett. 19, 467–473 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  55. Sanchez, T., Cruz-Zavala, E., Moreno, J.A.: An SOS method for the design of continuous and discontinuous differentiators. Int. J. Control 91(11), 2597–2614 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sanchez, T., Moreno, J.A.: Design of Lyapunov functions for a class of homogeneous systems: generalized forms approach. Int. J. Robust Nonlinear Control 29(3), 661–681 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  57. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Birkhauser, Springer, New York (2014)

    Book  Google Scholar 

  58. Torres-González, V., Fridman, L.M., Moreno, J.A.: Continuous twisting algorithm. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 5397–5401 (2015)

    Google Scholar 

  59. Torres-González, V., Sanchez, T., Fridman, L.M., Moreno, J.A.: Design of continuous twisting algorithm. Automatica 80, 119–126 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. Zamora, C., Moreno, J.A., Kamal, S.: Control integral discontinuo para sistemas mecánicos. In: 2013 Congreso Nacional de Control Automático (CNCA AMCA), pp. 11–16, Ensenada, Baja California, Mexico (2013). Asociación de México de Control Automático (AMCA)

    Google Scholar 

  61. Zubov, V.I.: Methods of A. M. Lyapunov and Their Applications. P. Noordho Limited, Groningen (1964)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support from PAPIIT-UNAM (Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica), project IN110719; Fondo de Colaboración II-FI UNAM, Project IISGBAS-100-2015; CONACyT (Consejo Nacional de Ciencia y Tecnología), project 241171; and SEP-PRODEP Apoyo a la Incorporación de NPTC project 511-6/18-9169UDG-PTC-1400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime A. Moreno .

Editor information

Editors and Affiliations

Appendix: Some Technical Lemmas on Homogeneous Functions

Appendix: Some Technical Lemmas on Homogeneous Functions

We recall some useful lemmas needed for the development of our main results. Lemmas 2.6 and 2.7 are extensions of classical results for homogeneous continuous functions to semicontinuous ones [21, Theorems 4.4 and 4.1] (for their proofs see [12, 46]).

Lemma 2.5

([19] Young’s inequality) For any positive real numbers \(a>0\), \(b>0\), \(c>0\), \(p>1\), and \(q>1\), with \(\frac{1}{p}+\frac{1}{q}=1\), the following inequality is always satisfied:

$$ ab\le {\displaystyle \frac{c^{p}}{p}a^{p}+\frac{c^{-q}}{q}b^{q},} $$

and equality holds if and only if \(a^{p}=b^{q}\).

And the lemma is given as follows.

Lemma 2.6

Let \(\eta :\mathbb {R}^{n}\rightarrow \mathbb {R}\) and \(\gamma :\mathbb {R}^{n}\rightarrow \mathbb {R}_{+}\) (resp. \(\gamma : \mathbb {R}^{n} \rightarrow \mathbb {R}_{-}\)) be two lower (upper) semicontinuous single-valued \(\mathbf {r}\)-homogeneous functions of degree \(m>0\). Suppose that \(\gamma \left( x\right) \ge 0\) \(\left( \mathrm {resp.}\,\gamma \left( x\right) \le 0\right) \) on \(\mathbb {R}^{n}\). If \(\eta \left( x\right) >0\) \(\left( \mathrm {resp.}\,\eta \left( x\right) <0\right) \) for all \(x\ne 0\) such that \(\gamma \left( x\right) =0\), then there is a constant \(\lambda ^{*}\in \mathbb {R}\) and a constant \(c>0\) such that for all \(\lambda \ge \lambda ^{*}\) and for all \(x\in \mathbb {R}^{n}\setminus \{0\}\),

$$ \eta (x)+\lambda \gamma (x)\ge c\left\| x\right\| _{\mathbf {r},p}^{m}\;,\;\left( \mathrm {resp.}\,\eta (x)+\lambda \gamma (x)\le -c\left\| x\right\| _{\mathbf {r},p}^{m}\right) \,. $$

Lemma 2.7

Let \(\eta :\mathbb {R}^{n}\rightarrow \mathbb {R}\) be an upper semicontinuous, single-valued \(\mathbf {r}\)-homogeneous function, with weights \(\mathbf{r} =[r_{1},\ldots ,r_{n}]^{\top }\) and degree \(m>0\). Then there is a point \(x_{2}\) in the unit homogeneous sphere \(S=\{x\in \mathbb {R}^{n}:\Vert x\Vert _{\mathbf {r},p}=1\}\) such that the following inequality holds for all \(x\in \mathbb {R}^{n}\):

$$\begin{aligned} \eta (x)\le \eta \left( x_{2}\right) \left\| x\right\| _{\mathbf {r},p}^{m}\,. \end{aligned}$$
(2.47)

Under the same conditions, if \(\eta \) is lower semicontinuous, there is a point \(x_{1}\) in the unit homogeneous sphere S such that the following inequality holds for all \(x\in \mathbb {R}^{n}\):

$$\begin{aligned} \eta \left( x_{1}\right) \left\| x\right\| _{\mathbf {r},p}^{m}\le \eta (x)\,. \end{aligned}$$
(2.48)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moreno, J.A., Cruz-Zavala, E., Mercado-Uribe, Á. (2020). Discontinuous Integral Control for Systems with Arbitrary Relative Degree. In: Steinberger, M., Horn, M., Fridman, L. (eds) Variable-Structure Systems and Sliding-Mode Control. Studies in Systems, Decision and Control, vol 271. Springer, Cham. https://doi.org/10.1007/978-3-030-36621-6_2

Download citation

Publish with us

Policies and ethics