Skip to main content

Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals

  • Reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

With the rapid industrialization and urbanization, different kinds of undesirable and harmful heavy metal ions in large amounts are discharged into the water environment. As well known, the adsorption technique is proven to be effective in removing heavy metals from water. Due to its earth-abundant, environmentally friendly, and cost-effective properties, iron oxide has been widely used as an adsorbent in water remediation. Therefore, this chapter will give an overview of the application of iron oxide nanomaterials for the removal of heavy metals. It mainly includes the following contents. Firstly, the typical iron oxide nanomaterials such as FeOOH, Fe2O3, and Fe3O4 will be introduced, including the composition, structure, preparation method, surface modification strategy, etc. Secondly, the adsorption kinetics and underlying mechanism will be summarized based on the different iron oxide nanomaterials. Finally, the actual application of iron oxide nanomaterials in the removal of heavy metals is introduced, of course, the potential applications and further challenges are also discussed. The aim of this handbook is to outline the recent development, history of iron oxide nanomaterials, and their application for heavy metals treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang X, Huang Q, Deng F, Huang H, Wan Q, Liu M, Wei Y (2017) Mussel-inspired fabrication of functional materials and their environmental applications: progress and prospects. Appl Mater Today 7:222–238

    Article  Google Scholar 

  2. Bali M, Tlili H (2019) Removal of heavy metals from wastewater using infiltration-percolation process and adsorption on activated carbon. Int J Environ Sci Technol 16(1):249–258

    Article  CAS  Google Scholar 

  3. Bharath G, Ponpandian N (2015) Hydroxyapatite nanoparticles on dendritic α-Fe2O3 hierarchical architectures for a heterogeneous photocatalyst and adsorption of Pb(II) ions from industrial wastewater. RSC Adv 5(103):84685–84693

    Article  CAS  Google Scholar 

  4. Nassar NN (2010) Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J Hazard Mater 184(1–3):538–546

    Article  CAS  Google Scholar 

  5. Shen Y, Tang J, Nie Z, Wang Y, Ren Y, Zuo L (2009) Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water. Bioresour Technol 100(18):4139–4146

    Article  CAS  Google Scholar 

  6. Schwertmann U, Cornell RM (2008) Iron Oxides in the Laboratory: Preparation and Characterisation. 2nd Edition, Wiley-VCH, New York, 15

    Google Scholar 

  7. Nassar NN (2012) Iron oxide nanoadsorbents for removal of various pollutants from wastewater: an overview. In: Application of adsorbents for water pollution control, pp 81–118

    Chapter  Google Scholar 

  8. Li Y, Liao H, Qian Y (1998) Hydrothermal synthesis of ultrafine α-Fe2O3 and Fe3O4 powders. Mater Res Bull 33(6):841–844

    Article  CAS  Google Scholar 

  9. Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol. https://doi.org/10.1155/2014/398569

  10. Joseyphus RJ, Kodama D, Matsumoto T, Sato Y, Jeyadevan B, Tohji K (2007) Role of polyol in the synthesis of Fe particles. J Magn Magn Mater 310(2-part-P3):2393–2395

    Article  CAS  Google Scholar 

  11. Cai W, Wan J (2007) Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J Colloid Interface Sci 305(2):366–370

    Article  CAS  Google Scholar 

  12. Kim EH, Lee HS, Kwak BK, Kim B-K (2005) Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J Magn Magn Mater 289:328–330

    Article  CAS  Google Scholar 

  13. Yunfeng L, Yanjie H, Guangjian H, Chunzhong L (2013) Metallic iron nanoparticles: Flame synthesis, characterization and magnetic properties. Particuology 11:460–467

    Article  CAS  Google Scholar 

  14. Cui H, Liu Y, Ren W (2013) Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Adv Powder Technol 24(1):93–97

    Article  CAS  Google Scholar 

  15. Fajaroh F, Setyawan H, Widiyastuti W, Winardi S (2012) Synthesis of magnetite nanoparticles by surfactant-free electrochemical method in an aqueous system. Adv Powder Technol 23(3):328–333

    Article  CAS  Google Scholar 

  16. Bowles WJF (2003) The iron oxides: structure, properties reactions occurrence and uses. Mineral Mag 61(408):740–741

    Article  Google Scholar 

  17. Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462

    Article  CAS  Google Scholar 

  18. Swedlund PJ, Webster JG, Miskelly GM (2009) Goethite adsorption of Cu (II), Pb (II), Cd (II), and Zn (II) in the presence of sulfate: properties of the ternary complex. Geochim Cosmochim Acta 73(6):1548–1562

    Article  CAS  Google Scholar 

  19. Eigen M, Tamm UK (2015) Schallabsorption in Elektrolytlösungen als Folge chemischer Relaxation II. Meßergebnisse und Relaxationsmechanismen für 2—2-wertige. Elektrolyte 66(2):107–121

    Google Scholar 

  20. Xie J, Gu X, Tong F, Zhao Y, Tan Y (2015) Surface complexation modeling of Cr (VI) adsorption at the goethite–water interface. J Colloid Interface Sci 455:55–62

    Article  CAS  Google Scholar 

  21. Mamindy-Pajany Y, Hurel C, Marmier N, Roméo M (2009) Arsenic adsorption onto hematite and goethite. C R Chim 12(8):876–881

    Article  CAS  Google Scholar 

  22. Jiangbo S, Shanbin GWCHM (2006) A study of chromium adsorption on natural goethite biomineralized with iron bacteria. Acta Geol Sin (English edition) 80(4):597–603

    Google Scholar 

  23. Weng L, Van Riemsdijk WH, Hiemstra T (2008) Cu2+ and Ca2+ adsorption to goethite in the presence of fulvic acids. Geochim Cosmochim Acta 72(24):5857–5870

    Article  CAS  Google Scholar 

  24. Dickson D, Liu G, Cai Y (2017) Adsorption kinetics and isotherms of arsenite and arsenate on hematite nanoparticles and aggregates. J Environ Manag 186:261–267

    Article  CAS  Google Scholar 

  25. Liu Z, Yu R, Dong Y, Li W, Zhou W (2016) Preparation of α-Fe2O3 hollow spheres, nanotubes, nanoplates and nanorings as highly efficient Cr (vi) adsorbents. RSC Adv 6(86):82854–82861

    Article  CAS  Google Scholar 

  26. Bereket G, Arog AZ, Özel MZ (1997) Removal of Pb (II), Cd (II), Cu (II), and Zn (II) from aqueous solutions by adsorption on bentonite. J Colloid Interface Sci 187(2):338–343

    Article  CAS  Google Scholar 

  27. Kefeni KK, Msagati TA, Nkambule TT, Mamba BB (2018) Synthesis and application of hematite nanoparticles for acid mine drainage treatment. J Environ Chem Eng 6(2):1865–1874

    Article  CAS  Google Scholar 

  28. Su H, Ye Z, Hmidi N (2017) High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal. Colloids Surf A Physicochem Eng Asp 522:161–172

    Article  CAS  Google Scholar 

  29. Ravindranath R, Roy P, Periasamy AP, Chen Y-W, Liang C-T, Chang H-T (2017) Fe2O3/Al2O3 microboxes for efficient removal of heavy metal ions. New J Chem 41(15):7751–7757

    Article  CAS  Google Scholar 

  30. Shipley HJ, Engates KE, Grover VA (2013) Removal of Pb (II), Cd (II), Cu (II), and Zn (II) by hematite nanoparticles: effect of sorbent concentration, pH, temperature, and exhaustion. Environ Sci Pollut Res 20(3):1727–1736

    Article  CAS  Google Scholar 

  31. Mahapatra A, Mishra B, Hota G (2013) Electrospun Fe2O3–Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J Hazard Mater 258:116–123

    Article  CAS  Google Scholar 

  32. Verdugo EM, Xie Y, Baltrusaitis J, Cwiertny DM (2016) Hematite decorated multi-walled carbon nanotubes (α-Fe2O3/MWCNTs) as sorbents for Cu (II) and Cr (VI): comparison of hybrid sorbent performance to its nanomaterial building blocks. RSC Adv 6(102):99997–100007

    Article  CAS  Google Scholar 

  33. Hu J, Chen G, Lo IM (2005) Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res 39(18):4528–4536

    Article  CAS  Google Scholar 

  34. Rajput S, Singh LP, Pittman CU Jr, Mohan D (2017) Lead (Pb2+) and copper (Cu2+) remediation from water using superparamagnetic maghemite (γ-Fe2O3) nanoparticles synthesized by Flame Spray Pyrolysis (FSP). J Colloid Interface Sci 492:176–190

    Article  CAS  Google Scholar 

  35. Chávez-Guajardo AE, Medina-Llamas JC, Maqueira L, Andrade CA, Alves KG, de Melo CP (2015) Efficient removal of Cr (VI) and Cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem Eng J 281:826–836

    Article  CAS  Google Scholar 

  36. Predescu A, Nicolae A (2012) Adsorption of Zn, Cu and Cd from waste waters by means of maghemite nanoparticles. UPB Bull Sci Series B Chem Mater Sci 74(1):255–264

    CAS  Google Scholar 

  37. Yuan P, Fan M, Yang D, He H, Liu D, Yuan A, Zhu J, Chen T (2009) Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr (VI)] from aqueous solutions. J Hazard Mater 166(2–3):821–829

    Article  CAS  Google Scholar 

  38. Maity D, Agrawal D (2007) Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater 308(1):46–55

    Article  CAS  Google Scholar 

  39. Warner CL, Addleman RS, Cinson AD, Droubay TC, Engelhard MH, Nash MA, Yantasee W, Warner MG (2010) High-performance, superparamagnetic, nanoparticle-based heavy metal sorbents for removal of contaminants from natural waters. ChemSusChem 3(6):749–757

    Article  CAS  Google Scholar 

  40. Mahmoud ME, Abdelwahab MS, Abdou AE (2016) Enhanced removal of lead and cadmium from water by Fe3O4-cross linked-O-phenylenediamine nano-composite. Sep Sci Technol 51(2):237–247

    Article  CAS  Google Scholar 

  41. Jamshidiyan M, Shirani A, Alahyarizadeh G (2017) Solvothermal synthesis and characterization of magnetic Fe3O4 nanoparticle by different sodium salt sources. Mater Sci-Pol 35(1):50–57

    Article  CAS  Google Scholar 

  42. Giraldo L, Erto A, Moreno-Piraján JC (2013) Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption 19(2–4):465–474

    Article  CAS  Google Scholar 

  43. Mayo J, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin V (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8(1–2):71–75

    Article  CAS  Google Scholar 

  44. Zhang C, Mo Z, Zhang P, Feng C, Guo R (2013) Facile synthesis of porous carbon@ Fe3O4 composites and their applications in wastewater treatment. Mater Lett 106:107–110

    Article  CAS  Google Scholar 

  45. Badruddoza AZM, Shawon ZBZ, Rahman MT, Hao KW, Hidajat K, Uddin MS (2013) Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chem Eng J 225:607–615

    Article  CAS  Google Scholar 

  46. Huang S-H, Chen D-H (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent. J Hazard Mater 163(1):174–179

    Article  CAS  Google Scholar 

  47. Adeli M, Yamini Y, Faraji M (2017) Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arab J Chem 10:S514–S521

    Article  CAS  Google Scholar 

  48. Yavuz CT, Mayo J, Suchecki C, Wang J, Ellsworth AZ, D’Couto H, Quevedo E, Prakash A, Gonzalez L, Nguyen C (2010) Pollution magnet: nano-magnetite for arsenic removal from drinking water. Environ Geochem Health 32(4):327–334

    Article  CAS  Google Scholar 

  49. Saharan P, Chaudhary GR, Mehta S, Umar A (2014) Removal of water contaminants by iron oxide nanomaterials. J Nanosci Nanotechnol 14(1):627–643

    Article  CAS  Google Scholar 

  50. Wang L, Li J, Jiang Q, Zhao L (2012) Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water. Dalton Trans 41(15):4544–4551

    Article  CAS  Google Scholar 

  51. Singh S, Barick K, Bahadur D (2011) Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. J Hazard Mater 192(3):1539–1547

    Article  CAS  Google Scholar 

  52. Qiu H, Zhang S, Pan B, Zhang W, Lv L (2013) Oxalate-promoted dissolution of hydrous ferric oxide immobilized within nanoporous polymers: effect of ionic strength and visible light irradiation. Chem Eng J 232:167–173

    Article  CAS  Google Scholar 

  53. Zhang Y, Li Z (2017) Heavy metals removal using hydrogel-supported nanosized hydrous ferric oxide: synthesis, characterization, and mechanism. Sci Total Environ 580:776–786

    Article  CAS  Google Scholar 

  54. Xiong W, Peng J (2008) Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent. Water Res 42(19):4869–4877

    Article  CAS  Google Scholar 

  55. Tamaura Y, Katsura T, Rojarayanont S, Yoshida T, Abe H (1991) Ferrite process; heavy metal ions treatment system. Water Sci Technol 23(10–12):1893–1900

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Luo, T., Yang, C., Tian, X., Luo, W., Nie, Y., Wang, Y. (2021). Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_76

Download citation

Publish with us

Policies and ethics