Skip to main content

Abstract

Man-made fibers or synthetic fibers made from fossil sources possess properties superior over natural fibers such as wool, sisal, cotton, etc., due to their durability and chemical resistance. Nevertheless, the raw materials for the production of synthetic fibers are harmful to the environment or based on unsustainable processes. As a consequence man-made fibers from renewable sources have constantly gained more attention because it has been seen that they can be a good alternative for garments, disposable clothes, even fashion design. And above all, because it is possible to control their life cycle, avoiding that when they are discarded they add to the large amount of persistent waste that reaches landfills and the sea, in addition to that during the generation of the raw materials to fabricate this type of synthetic fibers, there is little or no environmental damage. The raw material that is used to generate textiles from renewable sources is obtained from plants, animals, and microorganisms, which by their very chemical nature are made up of attached atoms by chemical bonds that in certain process conditions can be broken or modified generating the material degradation. That is why it is extremely important to know the properties of these materials from renewable sources, in order to process them in the best way, in addition to being able to improve them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Auras RA, Lim LT, Selke SE, Tsuji H (2011) Poly(lactic acid), synthesis, properties, processing, and applications. Wiley, Hoboken

    Google Scholar 

  2. Ren J (2011) Biodegradable poly(lactic acid): synthesis, modification, processing and applications. Springer Science & Business Media, New York

    Book  Google Scholar 

  3. Sülar V, Oner E, Devrim G, Aslan M, Eser B (2016) A comparative study on performance properties of yarns and knitted fabrics made of biodegradable and conventional fibers. Fibers Polym 17(12):2085–2094

    Article  CAS  Google Scholar 

  4. Blackburn RS (2005) Biodegradable and sustainable fibres. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  5. Hoogsteen W, Postema AR, Pennings AJ, Brinke GT, Zugen P (1999) Crystal structure, conformation, and morphology of solution-spun poly(l-lactide) fibers. Macromolecules 23:634–642

    Article  Google Scholar 

  6. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  7. Vink ETH, Davies S (2015) Life cycle inventory and impact assessment data for 2014 Ingeo™ polylactide production. Ind Biotechnol 11:167–180

    Article  CAS  Google Scholar 

  8. Ciardelli F, Bertoldo M, Bronco S, Passaglia E (2019) Polymers from fossil and renewable resources scientific and technological comparison of plastic properties. Springer Nature, Cham

    Book  Google Scholar 

  9. Yamanaka T, Ohme H, Inoue T (2007) Future directions for the research and development of polyesters: from high-performance to environmentally friendly. Pure Appl Chem 79:1541–1551

    Article  CAS  Google Scholar 

  10. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12(23):1841–1846

    Article  CAS  Google Scholar 

  11. Sanyang ML, Jawaid M (2019) Bio-based polymers and nanocomposites. Preparation, processing, properties & performance. Springer Nature, Cham

    Book  Google Scholar 

  12. Muthu SS (2014) Roadmap to sustainable textiles and clothing: eco-friendly raw materials, technologies, and processing methods. Springer, Singapur

    Book  Google Scholar 

  13. Jacobsen S, Fritz HG, Degée P, Dubois P, Jérôme R (1999) Polylactide (PLA) – a new way of production. Polym Eng Sci 39(7):1311–1319

    Article  CAS  Google Scholar 

  14. Boucher J, Friot D (2017) Primary microplastics in the oceans: a global evaluation of sources. IUCN, Gland

    Book  Google Scholar 

  15. Yuan XW, Jayaraman K, Bhattacharyya D (2002) Sisal fibers in composites: the effects of plasma treatment. ACCM-3, p 615

    Google Scholar 

  16. Avinc O, Khoddami A (2009) Overview of poly(lactic acid) (Pla) fibre part I: production, properties, performance, environmental impact, and end-use applications of poly(lactic acid) fibres. Fibre Chem 41(6):391

    Article  CAS  Google Scholar 

  17. Kwon GS, Ferguson DF (2007) Biodegradable polymers for drug delivery systems. In: Jenkins M (ed) Biomedical polymers, 1st edn. Woodhead Publishing, Cambridge

    Google Scholar 

  18. Agrawal CM, Athanasiou KA (1997) Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res 38:105

    Article  CAS  Google Scholar 

  19. Avinc O, Khoddami A, Hasani H (2011) A mathematical model to compare the handle of PLA and PET knitted fabrics after different finishing steps. Fiber Polym 12(3):405–413

    Article  CAS  Google Scholar 

  20. Ahmad EEM, Luyt AS (2012) Morphology, thermal, and dynamic mechanical properties of poly(lactic acid)/sisal whisker nanocomposites. Polym Compos 33:1025–1032

    Article  CAS  Google Scholar 

  21. Baig GA (2013) Reduction clearing of simulated disperse dyed PLA fabrics and their tensile properties. Indian J Fibre Text 38:22–28

    CAS  Google Scholar 

  22. Kothari VK, Yadav S (2008) Textile innovations: part VII. Asian Text J 17:29

    CAS  Google Scholar 

  23. Bledzki AK, Jaszkiewicz A (2010) Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres – a comparative study to PP. Compos Sci Technol 70:1687–1696

    Article  CAS  Google Scholar 

  24. Pei AH, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA) – crystallization and mechanical property effects. Compos Sci Technol 70:815–821

    Article  CAS  Google Scholar 

  25. Wang R, Wang S, Zhang Y (2009) Morphology, rheological behavior, and thermal stability of PLA/PBSA/POSS composites. J Appl Polym Sci 113:3095–3102

    Article  CAS  Google Scholar 

  26. Farrington DW, Lunt J, Davies S, Blackburn RS (2008) Poly(lactic acid) fibers. In: Deopura BL, Alagirusamy R, Joshi M, Gupta B (eds) Polyesters and polyamides. Woodhead, Cambridge, UK.

    Google Scholar 

  27. Payne GF, Smith PB (2011) Renewable and sustainable polymer, ACS symposium series 1063. American Chemical Society, Washington, DC

    Book  Google Scholar 

  28. Ziabicki A (1976) Fundamentals of fiber formation. Wiley-Interscience, New York

    Google Scholar 

  29. Lehermeier HJ, Dorgan JR (2001) Melt rheology of poly(lactic acid): consequences of blending chain architectures. Polym Eng Sci 41:2172–2184

    Article  CAS  Google Scholar 

  30. Topolkaraev V, Chakravarty J, Possell K, Hristov H (2006) Method of making fibers and nonwovens with improved properties. US Patent Publication US20060273495A1

    Google Scholar 

  31. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  32. Klemm D, Schmauder H-P, Heinze T (2002) Biopolymers, vol 6 (eds: Vandamme E, de Beats S, Steinbchel A). Wiley-VCH, Weinheim

    Google Scholar 

  33. Kaplan DL (1998) Biopolymers from renewable resources (ed: Kaplan DL). Springer, Berlin

    Google Scholar 

  34. Rojas OJ (2016) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer International Publishing, Cham

    Book  Google Scholar 

  35. Cavaco-Paulo A (1998) Processing textile fibers with enzymes: an overview. In: Enzyme applications in fiber processing. pp 180–189. American Chemical Society, Washington DC

    Google Scholar 

  36. Bajpai P (1999) Application of enzymes in the pulp and paper industry. Biotechnol Prog 15(2):147–157

    Article  CAS  Google Scholar 

  37. van de Ven T, Godbout L (2013) Cellulose – fundamental aspects. Direct dissolution of cellulose: background, means and applications. InTechOpen. McGill University, Canada

    Google Scholar 

  38. Chen C, Duan C, Li J, Liu Y, Ma X, Zheng L, Stavik J, Ni Y (2016) Cellulose (dissolving pulp) manufacturing processes and properties: a mini-review. BioResources 11(2):5553–5564

    Article  CAS  Google Scholar 

  39. Woodings C (2001) Regenerated cellulose fibres. Woodhead Publishing Ltd, Cambridge

    Book  Google Scholar 

  40. Krssig H, Steadman RG, Schliefer K, Albrecht W (1986) Ullmann’s encyclopedia of industrial chemistry, vol A5 (eds: Gerhartz W, Yamamoto YS, Campbell FT, Pfefferkorn R, Rounsaville JF). VCH, Weinheim

    Google Scholar 

  41. Rosenau T, Potthast A, Adorjan I, Hofinger A, Sixta H, Firgo H, Kosma P (2002) Cellulose solutions in N-methylmorpholine-N-oxide (NMMO) – degradation processes and stabilizers. Cellulose 9(3):283–291

    Article  CAS  Google Scholar 

  42. Luo WY (2001) Proceedings of the 11th annual international TANDEC nonwovens conference, Knoxville

    Google Scholar 

  43. Struszczyk H, Ciechanska D, Wawro D, Nousiainen P, Matero M (1995) Direct soluble cellulose of celsol: properties and behaviour. In: Cellulose derivatives: physical–chemical aspects and industrial applications. Kennedy, J.F. and Phillips, G.O., Woodhead Publishing Ltd, Cambridge

    Google Scholar 

  44. Struszczyk H (1997) Alternative wet spinning technologies for the manufacture of cellulose fibres. In: Cellulosic men-made fibres. Singapore, Akzo Nobel Co., chapter 18

    Google Scholar 

  45. Ciechanska D, Wawro D, Struszczyk H, Steplewski W (2003) Advanced technical cellulosic products based on enzyme treated pulp. Third CEC, fibres-grade polymers, chemical fibres and special textiles, Portorose, Slowenia

    Google Scholar 

  46. Fu F, Yang Q, Zhou J, Hu H, Jia B, Zhang L (2014) Structure and properties of regenerated cellulose filaments prepared from cellulose carbamate−NaOH/ZnO aqueous solution. ACS Sustain Chem Eng 2:2604–2612

    Article  CAS  Google Scholar 

  47. Volova T (2004) Polyhydroxyalkanoates plastic material of the 21st century: production, properties, applications. Nova, New York

    Google Scholar 

  48. Avérous L, Pollet E (2012) Environmental silicate nano-biocomposites. Green energy and technology. Springer, London

    Book  Google Scholar 

  49. Katiyar V, Kumar A Mulchandani N (2019) Advances in sustainable polymers: processing and applications. Series materials horizons: from nature to nanomaterials. Springer Nature, Singapore

    Google Scholar 

  50. Surendran A, Lakshmanan M, Chee JY, Sulaiman AM, Thuoc DV, Sudesh K (2020) Can polyhydroxyalkanoates be produced efficiently from waste plant and animal oils? Front Bioeng Biotechnol 8:169

    Article  Google Scholar 

  51. Chodak I (2002) Degradable polymers principles and applications, 2nd edn. (ed: Scott G). Kluwer Academy Publications, Dordrecht/Boston/London

    Google Scholar 

  52. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25(10):1503–1555

    Article  CAS  Google Scholar 

  53. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53(1):5–21

    Article  CAS  Google Scholar 

  54. Kotnis MA, O’Brien GS, Willet JL (1995) Processing and mechanical properties of biodegradable poly(hydroxybutyrate-co-valerate)-starch compositions. J Environ Polym Degrad 3(2):97–105

    Article  CAS  Google Scholar 

  55. Ebata H, Toshima K, Matsumura S (2007) Lipase-catalyzed synthesis and curing of high-molecular-weight polyricinoleate. Macromol Biosci 7(6):798–803

    Article  CAS  Google Scholar 

  56. Plackett D (2011) Biopolymers: new materials for sustainable films and coatings. Wiley, Chichester

    Book  Google Scholar 

  57. Liu WJ, Yang HL, Wang Z, Dong LS, Liu JJ (2002) Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J Appl Polym Sci 86:2145–2152

    Article  CAS  Google Scholar 

  58. Ma P, Deshmukh YS, Wilsens CHRM, Hansen MR, Graf R, Rastogi S (2015) Self-assembling process of oxalamide compounds and their nucleation efficiency in bio-degradable poly(hydroxyalkanoate)s. Sci Rep 5(1):2015

    Google Scholar 

  59. Yamane H, Terao K, Hiki S, Kimura Y (2001) Mechanical properties and higher order structure of bacterial homo poly(3-hydroxybutyrate) melt spun fibers. Polymer 42(7):3241–3248

    Article  CAS  Google Scholar 

  60. Yamane H, Terao K, Hiki S, Kawahara Y, Kimura Y, Saito T (2001) Enzymatic degradation of bacterial homo-poly(3-hydroxybutyrate) melt spun fibers. Polymer 42(18):7873–7878

    Article  CAS  Google Scholar 

  61. Schmack G, Jehnichen D, Vogel R, Tandler B (2000) Biodegradable fibers of poly(3-hydroxybutyrate) produced by high-speed melt spinning and spin drawing. J Polym Sci B Polym Phys 38(21):2841–2850

    Article  CAS  Google Scholar 

  62. Volova TG, Gordeev SA, Shishatskaya EI (2008) Production of oriented fibers out of poly(hydroxybutyrate/hydroxyvalerate) copolymers and testing of mechanical stability under static and cyclic loads. J Sib Fed Univ Biol 2(1):126–135

    Google Scholar 

  63. Liu Q, Zhang H, Deng B, Zhao X (2014) Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate): structure, property, and fiber. Int J Polym Sci. Article ID 374368, 11 p

    Google Scholar 

  64. Gordeyev SA, Nekrasov YP, Shilton SJ (2001) Processing of gel-spun poly(β-hydroxybutyrate) fibers J. Appl Polym Sci 81(9):2260–2264

    Article  CAS  Google Scholar 

  65. Felgueiras HP, Tavares TD, Amorim MTP (2019) Biodegradable, spun nanocomposite polymeric fibrous dressings loaded with bioactive biomolecules for an effective wound healing: a review. IOP Conf Ser Mater Sci Eng 634:012033

    Article  CAS  Google Scholar 

  66. Abasalizadeh F, Moghaddam SV, Alizadeh E, Akbari E, Kashani E, Fazljou SMB, Torbati M, Akbarzadeh A (2020) Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 14(8):1–22

    Google Scholar 

  67. Qin Y (2018) Bioactive seaweeds for food applications, chapter 7. In: Seaweed hydrocolloids as thickening, gelling, and emulsifying agents in functional food products. Elsevier Academic Press, United Kingdom

    Google Scholar 

  68. Zhang C-J, Liu Y, Cui L, Yan C, Zhu P (2016) Bio-based calcium alginate nonwoven fabrics: flame retardant and thermal degradation properties. J Anal Appl Pyrolysis 122:13–23

    Article  CAS  Google Scholar 

  69. Jejurikar A, Seow XT, Lawrie G, Martin D, Jayakrishnan A, Grøndahl L (2012) Degradable alginate hydrogels crosslinked by the macromolecular crosslinker alginate dialdehyde. J Mater Chem 22:9751

    Article  CAS  Google Scholar 

  70. Szekalska M., Pucilowska A., Szymanska E., Ciosek P. and Winnicka K (2016) Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci. Article ID 7697031, 17 p

    Google Scholar 

  71. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  Google Scholar 

  72. Li D, Chen Z (2019) Fe3O4/graphene oxide composite conductive fiber preparation. CN 109252239 A

    Google Scholar 

  73. Sánchez-Arévalo FM, Muñoz-Ramírez LD, Álvarez-Camacho M, Rivera-Torres F, Maciel-Cerda A, Montiel-Campos R, Vera-Graziano R (2017) Macro- and micromechanical behaviors of poly(lactic acid)–hydroxyapatite electrospun composite scaffolds. J Mater Sci 52:3353–3367

    Article  CAS  Google Scholar 

  74. Dharmalingam S, Hayes DG, Wadsworth LC, Dunlap RN, DeBruyn JM, Lee J, Wszelaki AL (2015) Soil degradation of polylactic acid/polyhydroxyalkanoate-based nonwoven mulches. J Polym Environ 23(3):302–315

    Article  CAS  Google Scholar 

  75. Haslinger S, Ye Y, Rissanen M, Hummel M, Sixta H (2020) Cellulose fibers for high-performance textiles functionalized with incorporated gold and silver nanoparticles. ACS Sustain Chem Eng 8:649–658

    Article  CAS  Google Scholar 

  76. Skwierczynska M, Runowski M, Kulpinski P, Lis S (2019) Modification of cellulose fibers with inorganic luminescent nanoparticles based on lanthanide(III) ions. Carbohydr Polym 206:742–748

    Article  CAS  Google Scholar 

  77. Martin DP, Rizk SP, Ahuja A, Williams SF (2004) Polyhydroxyalkanoate medical textiles and fibers. WO 2004/101002 A2

    Google Scholar 

  78. Van Renz Jeroen EE, Fischer S (2006) Biodegradable ceramic-polymer composite. WO 2006/016811 A1

    Google Scholar 

  79. Sui K, Tan Y, Zhang Q, Xia Y, Pan N, Qin X (2014) A carbon-based nanoparticle sodium alginate multifunctional high-performance composite fiber and preparation method thereof. CN 104178845

    Google Scholar 

  80. Liu L, Gao P, Wang H, Chen Y (2015) Preparation of alginate wound dressing containing silver/zinc nanoparticles. CN 104940980 A

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alberto Ávila-Orta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Melo-Lopez, L., Cabello-Alvarado, C.J., Andrade-Guel, M.L., Medellín-Banda, D.I., Fonseca-Florido, H.A., Ávila-Orta, C.A. (2021). Synthetic Fibers from Renewable Sources. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-36268-3_145

Download citation

Publish with us

Policies and ethics