Skip to main content

Surface Properties of Polysaccharides

  • Living reference work entry
  • First Online:
Polysaccharides of Microbial Origin
  • 46 Accesses

Abstract

Polysaccharides are sugar derivative polymers with high natural abundance existing in microorganisms, algae, plants, insects, and animals, where they play vital role in realizing cellular functions. On the contrary to synthetic polymers, polysaccharides stem as a renewable source of value-added chemicals that can be synthesized from microorganisms (bacteria and fungi) by fermentation without harmful side products, although with relatively higher costs. Most of the microbial polysaccharides are hydrophilic, biocompatible, and biodegradable, which make them used in food, cosmetics, pharmaceutical, and biomedical applications. Moreover, their physicochemical properties can be improved either by in situ changing the bacterial culture conditions or post synthesis surface modification, that is, cross linking to fulfill the requirement of more applications. In this review, the structure-function relationship of the most commercially used polysaccharides is summarized and different surface modification strategies are discussed with the focus on microbial polysaccharides. Recent advances in the applications of microbial polysaccharides are given with examples from literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad NH, Mustafa S, Man YBC. Microbial polysaccharides and their modification approaches: a review. Int J Food Prop. 2015;18(2):332–47.

    Article  CAS  Google Scholar 

  • Bhatnagar M, Bhatnagar A. Diversity of polysaccharides in Cyanobacteria. In: Satyanarayana T, et al., editors. Microbial diversity in ecosystem sustainability and biotechnological applications. Singapore: Springer Nature; 2019. p. 447–96.

    Chapter  Google Scholar 

  • Blakemore WR. Polysaccharide ingredients: carrageenan. In: Reference module in food sciences. Amsterdam: Elsevier; 2016.

    Google Scholar 

  • Boission-Vidal C, et al. Biological activities of polysaccharides from marine algae. Drugs Future. 1995;20(12):1237–49.

    Google Scholar 

  • Chang WS, et al. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. J Bacteriol. 2007;189:8290–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coviello T, Matricardi P, Marianecci C, Alhaique F. Polysaccharide hydrogels for modified release formulations. J Control Release. 2007;119:5–24.

    Article  CAS  PubMed  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM. Microbial cellulose—the natural power to heal wounds. Biomaterials. 2006;27:145–51.

    Article  CAS  PubMed  Google Scholar 

  • Dave PN, Gor A. Natural polysaccharide-based hydrogels and nanomaterials: recent trends and their applications. In: Hussain CM, editor. Handbook of nanomaterials for industry applications. Amsterdam: Elsevier; 2018. p. 36–66.

    Chapter  Google Scholar 

  • David S, et al. Revisiting the carrageenan controversy: do we really understand the digestive fate and safety of carrageenan in our foods? Food Funct. 2018;9:1344–52.

    Article  CAS  PubMed  Google Scholar 

  • Ficko-Blean E, et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat Commun. 2017;8:1685.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gholamali I. Stimuli-responsive polysaccharide hydrogels for biomedical applications: a review. Regen Eng Transl Med. 2019;7:91–114.

    Article  CAS  Google Scholar 

  • Gokila S, et al. Removal of the heavy metal ion chromiuim(VI) using chitosan and alginate nanocomposites. Int J Biol Macromol. 2017;104:1459–68.

    Article  CAS  PubMed  Google Scholar 

  • Gull N, et al. Modification of polyaniline. In: Visakh PM, Pina CD, Falletta E, editors. Polyaniline blends, composites, and nanocomposites. Amsterdam: Elsevier; 2018. p. 61–93.

    Chapter  Google Scholar 

  • Hadrich A, et al. Biomimetic hydrogel by enzymatic crosslinking of pullulan grafted with ferulic acid. Carbohydr Polym. 2020;250:116967.

    Article  CAS  PubMed  Google Scholar 

  • Harding SE. Analysis of polysaccharides by ultracentrifugation, size, conformation and interactions in solutions. Adv Polym Sci. 2005;186:211–54.

    Article  CAS  Google Scholar 

  • Hu H, Xu F-J. Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biometar Sci. 2020;8:2084.

    Article  CAS  Google Scholar 

  • Hu Y, et al. Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol Rapid Commun. 2018;39(20):1800069.

    Article  CAS  Google Scholar 

  • Hunter KW, Gault RA, Berner MD. Preparation of microparticulate β-glucan from Saccharomyces cerevisiae for use in immune potentiation. Lett Appl Microbiol. 2002;35:267–71.

    Article  CAS  PubMed  Google Scholar 

  • Jang T-S, Jung HD, Pan HW, et al. 3D printing of hydrogel composite systems: recent advances in technology for tissue engineering. Int J Bioprinting. 2018;4(1):126.

    Article  CAS  Google Scholar 

  • Jiang L. Effect of nitrogen source on curdlan production by Alcaligenes faecalis ATCC 31749. Int J Biol Macromol. 2013;52:218–20.

    Article  CAS  PubMed  Google Scholar 

  • Jindal N, Khattar JS. Microbial polysaccharides in food industry. In: Grumezescu AM, Holban AM, editors. Biopolymers for food design. Amsterdam: Elsevier; 2018. p. 95–123.

    Google Scholar 

  • Kothari D, Das D, Patel S, Goyal A. Dextran and food application. In: Ramawat KG, Merillon J-M, editors. Polysaccharides, vol. 2014. Cham: Springer; 2014. p. 1–16.

    Google Scholar 

  • Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1:16071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu WG, Yao KG, Liu QG. Formation of a DNA/N-dodecylated chitosan complex and salt-induced gene delivery. J Appl Polym Sci. 2001;82:3391–5.

    Article  CAS  Google Scholar 

  • Liu J, Willför S, Xu C. A review of bioactive plant polysaccharides: biological activities, functionalization, and biomedical applications. Bioact Carbohydr Diet Fibre. 2015;5:31–61.

    Article  CAS  Google Scholar 

  • Liu H, et al. Self-healing and injectable polysaccharide hydrogels with tunable mechanical properties. Cellulose. 2018;25:559–71.

    Article  CAS  Google Scholar 

  • Mager DM, Thomas AD. Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ. 2011;75:91–7.

    Article  Google Scholar 

  • Marszalek PE, Oberhauser AF, Pang Y-P, Fernandez JM. Polysaccharide elasticity governed by chair–boat transitions of the glucopyranose ring. Nature. 1998;396:661–4.

    Article  CAS  PubMed  Google Scholar 

  • McIntosh M, Stone BA, Stanisich VA. Curdlan and other bacterial (1→3)-β-D-glucans. Appl Microbiol Biotechnol. 2005;68:163–73.

    Article  CAS  PubMed  Google Scholar 

  • Mergen ÖB, Umut E, Arda E, Kara S. A comparative study on the AC/DC conductivity, dielectric and optical properties of polystyrene/graphene nanoplatelets (PS/GNP) and multi-walled carbon nanotube (PS/MWCNT) nanocomposites. Polym Test. 2020;90:106682.

    Article  CAS  Google Scholar 

  • Mourya VK, Inamdar NN. Trimethyl chitosan and its applications in drug delivery. J Mater Sci Mater Med. 2009;20:1057–79.

    Article  CAS  PubMed  Google Scholar 

  • Muthu M, et al. Exploiting microbial polysaccharides for biosorption of trace elements in aqueous environments—scope for expansion via nanomaterial intervention. Polymers. 2017;9:721.

    Article  PubMed Central  CAS  Google Scholar 

  • Na Y, et al. Removal of heavy metals by polysaccharide: a review. Polym-Plast Technol Mat. 2020;59(16):1770–90.

    CAS  Google Scholar 

  • Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): a review. Veterinari Medicina. 2008;53(8):397–411.

    Article  CAS  Google Scholar 

  • Neyts J, et al. Differential antiviral activity of derivatized dextrans. Biochem Pharmacol. 1995;50:743–51.

    Article  CAS  PubMed  Google Scholar 

  • Ng JY, et al. Biomimicry of microbial polysaccharide hydrogels for tissue engineering and regenerative medicine – a review. Carbohydr Polym. 2020;241:116345.

    Article  CAS  PubMed  Google Scholar 

  • Niknezhad NV, et al. Production of xanthan gum by free and immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii. Int J Biol Macromol. 2016;82:751–6.

    Article  CAS  PubMed  Google Scholar 

  • Oner ET. Microbial production of extracellular polysaccharides from biomass. In: Fang Z, editor. Pretreatment techniques for biofuels and biorefineries. Berlin: Springer; 2013. p. 35–56.

    Google Scholar 

  • Oner ET, Hernandez L, Combie J. Review of Levan polysaccharide: from a century of past experiences to future prospects. Biotechnol Adv. 2016;34(5):827–44.

    Article  CAS  PubMed  Google Scholar 

  • Patil S, Sharma S, Nimbalkar A, Pawar A. Study of formulation variables on properties of drug-gellan beads by factorial design. Drug Dev Ind Pharm. 2006;32:315–26.

    Article  CAS  PubMed  Google Scholar 

  • Rajinikanth PS, Mishra B. Floating in situ gelling system for stomach site-specific delivery of clarithromycin to eradicate H. pylori. J Control Release. 2008;125:33–41.

    Article  CAS  PubMed  Google Scholar 

  • Rajoka MSR, et al. Chitin/chitosan derivatives and their interactions with microorganisms: a comprehensive review and future perspectives. Crit Rev Biotechnol. 2020;40(3):365–79.

    Article  Google Scholar 

  • Reddy T, Tammishetti S. Gastric resistant microbeads of metal ion cross-linked carboxymethyl guar gum for oral drug delivery. J Microencapsul. 2002;19(3):311–8.

    Article  CAS  PubMed  Google Scholar 

  • Ruka DR, Simon GP, Dean KM. Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym. 2012;89:613–22.

    Article  CAS  PubMed  Google Scholar 

  • Sahiner N. Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis. Prog Polym Sci. 2013;38(9):1329–56.

    Article  CAS  Google Scholar 

  • Sahiner N, et al. HA particles as resourceful cancer, steroidal and antibiotic drug delivery device with sustainable and multiple drug release capability. J Macromol Sci Part A. 2020; https://doi.org/10.1080/10601325.2020.1832518.

  • Sarilmiser HK. Effective stimulating factors for microbial Levan production by Halomonas smyrnensis AAD6T. J Biosci Bioeng. 2015;119(4):455–63.

    Article  PubMed  CAS  Google Scholar 

  • Schilling C, Badri A, Sieber V, Koffas M, Schmid J. Metabolic engineering for production of functional polysaccharides. Curr Opin Biotechnol. 2020;66:44–51.

    Article  CAS  PubMed  Google Scholar 

  • Seton-Rogers S. Multitasking hyaluronic acid. Nat Rev Cancer. 2012;12:228.

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam M, Abirami RG. Microbial polysaccharides -chemistry and applications. J Biol Act Prod Nat. 2019;9(1):73–8.

    CAS  Google Scholar 

  • Shariatinia Z. Carboxymethyl chitosan: properties and biomedical applications. Int J Biol Macromol. 2018;120:1406–19.

    Article  CAS  PubMed  Google Scholar 

  • Shewan HM, Stokes JR. Review of techniques to manufacture micro-hydrogel particles for the food industry and their applications. J Food Eng. 2013;119:781–92.

    Article  CAS  Google Scholar 

  • Siddiqui NN, et al. Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydr Polym. 2014;99:331–8.

    Article  CAS  PubMed  Google Scholar 

  • Smelcerovic A, Knezevic-Jugovic Z, Petronijevic Z. Microbial polysaccharides and their derivatives as current and prospective pharmaceuticals. Curr Pharm Des. 2008;14:3168–95.

    Article  CAS  PubMed  Google Scholar 

  • Suner SS, et al. Tunable biopolymeric drug carrier Nanovehicles and their safety. In: Das MK, Pathak YV, editors. Nano medicine and Nano safety. Singapore: Springer; 2020. p. 405–32.

    Chapter  Google Scholar 

  • Trovatti E. The future of bacterial cellulose and other microbial polysaccharides. J Renew Mater. 2012;1:28–41.

    Article  CAS  Google Scholar 

  • Urtuvia V, et al. Bacterial alginate production: an overview of its biosynthesis and potential industrial production. World J Microbiol Biotechnol. 2017;33:198.

    Article  PubMed  CAS  Google Scholar 

  • Venugopal V. Polysaccharides: their characteristics and marine sources. Marine polysaccharides food applications. Boca Raton: CRC Press; 2011. p. 3–27.

    Book  Google Scholar 

  • Viegas de Souza RHF, et al. Diethylaminoethyl- chitosan as an efficient carrier for siRNA delivery: improving the condensation process and the nanoparticles properties. Int J Biol Macromol. 2018;119:186–97.

    Article  CAS  Google Scholar 

  • Volokhova AS, Edgar KJ, Matson JB. Polysaccharide-containing block copolymers: synthesis and applications. Mater Chem Front. 2020;4:99–112.

    Article  CAS  Google Scholar 

  • Wu Z, et al. Novel magnetic polysaccharide/graphene oxide@Fe3O4 gel beads for adsorbing heavy metal ions. Carbohydr Polym. 2019;216:119–28.

    Article  CAS  PubMed  Google Scholar 

  • Wustenberg T. General overview of food hydrocolloids. Cellulose and cellulose derivatives in the food industry: fundamentals and applications. Weinheim: Wiley-VCH; 2014. p. 1–68.

    Google Scholar 

  • Xiao C, Gao Y. Preparation and properties of physically crosslinked sodium carboxymethylcellulose/poly(vinyl alcohol) complex hydrogels. J Appl Polym Sci. 2008;107:1568–72.

    Article  CAS  Google Scholar 

  • Yang D, et al. Functionalized chitosan electrospun nanofiber membranes for heavy-metal removal. Polymer. 2019;163:74–85.

    Article  CAS  Google Scholar 

  • Yang X, et al. An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures. Trends Food Sci Technol. 2020;102:1–15.

    Article  CAS  Google Scholar 

  • Yang I-H, et al. The development of laminin-alginate microspheres encapsulated with Ginsenoside Rg1 and ADSCs for breast reconstruction after lumpectomy. Bioact Mater. 2021;6(6):1699–710.

    Article  CAS  PubMed  Google Scholar 

  • You, YC et al. In vitro and in vivo application of pH-sensitive colon-targeting polysaccharide hydrogel used for ulcerative colitis therapy. Carbohydr Polym. 2015;130:243–253.

    Google Scholar 

  • Yu Y, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: a review. Carbohydr Polym. 2018;183:91–101.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, et al. Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis. Carbohydr Polym. 2015;115:694–700.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Monty J, Linhardt RJ. Polysaccharide-based nanocomposites and their applications. Carbohydr Polym. 2015;405:23–32.

    Article  CAS  Google Scholar 

  • Zhou L, et al. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Biomater Sci. 2020;8:5020–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evrim Umut .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Umut, E. (2021). Surface Properties of Polysaccharides. In: Oliveira, J., Radhouani, H., Reis, R.L. (eds) Polysaccharides of Microbial Origin. Springer, Cham. https://doi.org/10.1007/978-3-030-35734-4_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35734-4_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35734-4

  • Online ISBN: 978-3-030-35734-4

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics