Skip to main content

Legged Walking Robots: Design Concepts and Functional Particularities

  • Conference paper
  • First Online:
Advanced Technologies in Robotics and Intelligent Systems

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 80))

Abstract

In all likelihood, robotics will lead to a revolution in our lifestyle similar to internet or mobile phone. In this context, the design of walking systems is currently one of the most invested fields, which leads to the development of new products with large diversity. Among of these products may be well distinguished the multi degrees of freedom legged walking robots and the walking machines with legs having one or two degrees of freedom. Despite its long history, design of walking robots continue to develop and new solutions are constantly being reported. This paper provides an overview of walking robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lim, H.-O., Takanishi, A.: Biped walking robots created at Waseda University: WL and WABIAN family. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365(1850), 49–64 (2007)

    Article  Google Scholar 

  2. Kato, I., Tsuik, H.: The hydraulically powered biped walking machine with a high carrying capacity. In: Proceedings of the 4th International Symposium on External Control of Human Extremities (1972)

    Google Scholar 

  3. Omer, A.M.M., Ghorbani, R., Lim, H.-O., Takanishi, A.: Semi-passive dynamic walking for biped walking robot using controllable joint stiffness based on dynamic simulation. In: Proceedings of the 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1600–1605. IEEE, Singapore (2009)

    Google Scholar 

  4. Hashimoto, K., Hattori, K., Otani, T., Lim, H.-O., Takanishi, A.: Foot placement modification for a biped humanoid robot with narrow feet. Sci. World J. 259570, 9 (2014)

    Google Scholar 

  5. Vukobratović, M., Hristic, D., Stojiljkovic, Z.: Development of active anthropomorphic exoskeletons. Med. Biol. Eng. 12(1), 66–80 (1974)

    Google Scholar 

  6. Vukobratović, M.: Legged Locomotion Robots and Anthropomorphic Mechanisms : a monograph. Mihailo Pupin Institute, Belgrad (1975)

    Google Scholar 

  7. Vukobratović, M., Stepanenko, J.: On the stability of anthropomorphic systems. Math. Biosci. 15(1–2), 1–37 (1972)

    Article  Google Scholar 

  8. Waldron, K.J., McGhee, R.B.: The adaptive suspension vehicle. IEEE Control Syst. Mag., 7–12 (1986)

    Google Scholar 

  9. Raibert, M.H., Brown Jr., H.B., Chepponis, M.: Experiments in balance with a 3D one-legged hopping machine. Int. J. Rob. Res. 3(2), 75–92 (1984)

    Article  Google Scholar 

  10. Playter, R., Raibert, M.: Control of a biped somersault in 3D. In: Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 582–589. IEEE, Raleigh, NC, USA (1992)

    Google Scholar 

  11. Raibert, M., Chepponis, M., Brown, H.: Running on four legs as though they were one. IEEE J. Rob. Autom. 2(2), 70–82 (1986)

    Article  Google Scholar 

  12. Hodgins, J.: Legged robots on rough terrain: experiments in adjusting step length. In: Proceedings of the 1988 IEEE International Conference on Robotics and Automation, pp. 824–826. IEEE, Philadelphia, PA, USA (1988)

    Google Scholar 

  13. McGeer, T.: Passive Dynamic Walking. Int. J. Rob. Res. 9(2), 62–82 (1990)

    Article  Google Scholar 

  14. Collins, S.H., Ruina, A.: A Bipedal walking robot with efficient and human-like gait. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 1983–1988. IEEE, Barcelona, Spain (2005)

    Google Scholar 

  15. Saab, W., Rone, W.S., Ben-Tzvi, P.: Robotic modular leg: design, analysis, and experimentation. J. Mech. Rob. 9(2), 6 (2017)

    Google Scholar 

  16. Sakagami, Y., Watanabe, R., Aoyama, C., Matsunaga, S., Higaki, N., Fujimura, K.: The intelligent ASIMO: system overview and integration. In: Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and System, vol. 3, pp. 2478–2483. IEEE, Lausanne, Switzerland (2002)

    Google Scholar 

  17. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of Honda humanoid robot. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1321–1326. IEEE, Leuven, Belgium (1998)

    Google Scholar 

  18. Kaneko, K., Kanehiro, F., Kajita, S., Yokoyama, K., Akachi, K., Kawasaki, T., Ota, S., Isozumi, T.: Design of prototype humanoid robotics platform for HRP. In: Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and System, vol. 3, pp. 2431–2436. IEEE, Lausanne, Switzerland (2002)

    Google Scholar 

  19. Kaneko, K., Kanehiro, F., Morisawa, M., Akachi, K., Miyamori, G., Hayashi, A., Kanehira, N.: Humanoid robot HRP-4—Humanoid robotics platform with lightweight and slim body. In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4400–4407. IEEE, San Francisco, CA, USA (2011)

    Google Scholar 

  20. Playter R., Blankespoor, K., Bondaryk, J.,Rizzi, A., Saunders, A., Raibert, M.: Building man and beast at Boston Dynamics. In: Proceedings of the 2012 North America Conference on AUVSI Unmanned Systems, vol. 2, pp. 1041–1046. Las Vegas, NV, USA (2012)

    Google Scholar 

  21. https://en.wikipedia.org/wiki/Pafnuty_Chebyshev

  22. Plantigrade Machine. [Online]. Available: http://en.tcheb.ru/1. Accessed 25 May 2016

  23. Funabashi, H. et al.: Development of a walking chair with a self-attitude-adjusting mechanism for stable walking on uneven terrain. In: Proceedings of the 10th International World Congress on the Theory of Machines and Mechanisms, pp. 1164–1169, Oulu, Finland (1999)

    Google Scholar 

  24. Wu, Y., Higuchi, M., Takeda, Y., Sugimoto, K.: Development of a power assist system of a walking chair. J. Robot. Mechatron. 17(2), 189–197 (2005)

    Article  Google Scholar 

  25. Ottaviano, E., Ceccarelli, M., Tavolieri, C.: Kinematic and dynamic analyses of a pantograph-leg for a biped walking machine. In: Climbing and Walking Robots, pp. 561–568 (2005)

    Google Scholar 

  26. Liang, C., Ceccarelli, M., Takeda, Y.: Operation analysis of a one-DOF pantograph leg mechanisms. In: Proceedings of the RAAd 2008 17th International Workshop on Robotics in Alpe-Adria-Danube Region, vol. 50, p. 10. Ancona, Italy (2008)

    Google Scholar 

  27. Zhang, Y., Arakelian, V., Le Baron, J.-P.: Design of a legged walking robot with adjustable parameters. In: Advances in Mechanism Design II, pp. 65–71 (2016)

    Google Scholar 

  28. Williams, R.P., Tsai, L.-W., Azarm, S.: Design of a crank-and-rocker driven pantograph: a leg mechanism for the University of Maryland’s 1991 Walking Robot. In: Proceedings of the 2nd National Conference on Applied Mechanisms and Robotics, vol. 1, Paper No. VIB.2, p. 6. Cincinnati, OH (1991)

    Google Scholar 

  29. Shieh, W.-B., Tsai, L.-W., Azarm, S.: Design and optimization of a one-degree-of-freedom six-bar leg mechanism for a walking machine. J. Rob. Syst. 14(12), 871–880 (1997)

    Article  Google Scholar 

  30. Simionescu, P., Tempea, I.: Kinematic and kinetostatic simulation of a leg mechanism. In: Proceedings of the 10th World Conference on the theory of machines and mechanisms, Oulu, Finland (1999)

    Google Scholar 

  31. Klann J.: Walking device. Patent US 6 478 314 (1998)

    Google Scholar 

  32. Klann J.: Walking device. Patent US 6 260 862 (1998)

    Google Scholar 

  33. Lokhande, N.G., Emche, V.B.: Mechanical spider by using klann mechanism. Int. J. Mech. Eng. Comput. Appl. 1(5), 12–15 (2013)

    Google Scholar 

  34. Rooney T., Pearson, M., Welsby, J., Horsfield, I., Sewell, R., Dogramadzi, S.: Artificial active whiskers for guiding underwater autonomous walking robots. In: Proceedings CLAWAR 2011: The 14th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, p. 6. University Pierre et Marie Curie, Paris, France (2011)

    Google Scholar 

  35. The Walking Beast. [Online]. Available: http://moltensteelman.com/thewalkingbeast.html. Accessed 16 Oct 2018

  36. Jansen, T.: The Great Pretender. 010 Publishers, Rotterdam (2007)

    Google Scholar 

  37. Giesbrecht, D.F., Wu, C.Q., Sepehri, N.: Design and optimization of an eight-bar legged walking mechanism imitating a kinetic sculpture, “wind beast”. Trans. Can. Soc. Mech. Eng. 36(4), 343–355 (2012)

    Article  Google Scholar 

  38. Nansai, S., Elara, M.R., Iwase, M.: Dynamic analysis and modeling of Jansen mechanism. Procedia Eng. 64, 1562–1571 (2013)

    Article  Google Scholar 

  39. Kim, S.-W., Kim, D.-H.: Design of leg length for a legged walking robot based on Theo Jansen using PSO. J. Korean Inst. Intell. Syst. 21(5), 660–666 (2011)

    Article  Google Scholar 

  40. Patnaik, L., Umanand, L.: Kinematics and dynamics of Jansen leg mechanism: a bond graph approach. Simul. Model. Pract. Theory 60, 160–169 (2016)

    Article  Google Scholar 

  41. Zhang, Y., Arakelian, V.: Design of a single actuator walking robot via mechanism synthesis based on genetic algorithms. J. Rob. Mech. Eng. Res. 2(3), 1–7 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Arakelian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Arakelian, V. (2020). Legged Walking Robots: Design Concepts and Functional Particularities. In: Misyurin, S., Arakelian, V., Avetisyan, A. (eds) Advanced Technologies in Robotics and Intelligent Systems. Mechanisms and Machine Science, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-030-33491-8_2

Download citation

Publish with us

Policies and ethics