Skip to main content

Anatomical-Landmark-Based Deep Learning for Alzheimer’s Disease Diagnosis with Structural Magnetic Resonance Imaging

  • Chapter
  • First Online:
Deep Learning in Healthcare

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 171))

Abstract

Structural magnetic resonance imaging (sMRI) has been widely used in computer-aided diagnosis of brain diseases, such as Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Based on sMRI data, anatomical-landmark-based deep learning has been recently proposed for AD and MCI diagnosis. These methods usually first locate informative anatomical landmarks in brain sMR images, and then integrate both feature learning and classification training into a unified framework. This chapter presents the latest anatomical-landmark-based deep learning approaches for automatic diagnosis of AD and MCI. Specifically, an automatic landmark discovery method is first introduced to identify discriminative regions in brain sMR images. Then, a landmark-based deep learning framework is presented for AD/MCI classification, by jointly performing feature extraction and classifier training. Experimental results on three public databases demonstrate that the proposed framework boosts the disease diagnosis performance, compared with several state-of-the-art sMRI-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://mipav.cit.nih.gov/index.php.

  2. 2.

    http://fsl.fmrib.ox.ac.uk/fsl/fslwiki.

  3. 3.

    https://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

References

  1. Wolz, R., Aljabar, P., Hajnal, J.V., Hammers, A., Rueckert, D.: LEAP: learning embeddings for atlas propagation. NeuroImage 49(2), 1316–1325 (2010)

    Article  Google Scholar 

  2. Zhang, J., Gao, Y., Gao, Y., Munsell, B., Shen, D.: Detecting anatomical landmarks for fast Alzheimer’s disease diagnosis. IEEE Trans. Med. Imaging 35(12), 2524–2533 (2016)

    Article  Google Scholar 

  3. Ashburner, J., Friston, K.J.: Voxel-based morphometry: the methods. NeuroImage 11(6), 805–821 (2000)

    Article  Google Scholar 

  4. Jack, C., Petersen, R.C., Xu, Y.C., O’Brien, P.C., Smith, G.E., Ivnik, R.J., Boeve, B.F., Waring, S.C., Tangalos, E.G., Kokmen, E.: Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52(7), 1397 (1999)

    Article  Google Scholar 

  5. Atiya, M., Hyman, B.T., Albert, M.S., Killiany, R.: Structural magnetic resonance imaging in established and prodromal Alzheimer disease: a review. Alzheimer Dis. Assoc. Disord. 17(3), 177–195 (2003)

    Article  Google Scholar 

  6. Dubois, B., Chupin, M., Hampel, H., Lista, S., Cavedo, E., Croisile, B., Tisserand, G.L., Touchon, J., Bonafe, A., Ousset, P.J., et al.: Donepezil decreases annual rate of hippocampal atrophy in suspected prodromal Alzheimer’s disease. Alzheimer’s Dement. 11(9), 1041–1049 (2015)

    Article  Google Scholar 

  7. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 56(2), 766–781 (2011)

    Article  Google Scholar 

  8. Lötjönen, J., Wolz, R., Koikkalainen, J., Julkunen, V., Thurfjell, L., Lundqvist, R., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer’s disease. NeuroImage 56(1), 185–196 (2011)

    Article  Google Scholar 

  9. Liu, M., Zhang, D., Shen, D.: View-centralized multi-atlas classification for Alzheimer’s disease diagnosis. Hum. Brain Mapp. 36(5), 1847–1865 (2015)

    Article  Google Scholar 

  10. Montagne, A., Barnes, S.R., Sweeney, M.D., Halliday, M.R., Sagare, A.P., Zhao, Z., Toga, A.W., Jacobs, R.E., Liu, C.Y., Amezcua, L., et al.: Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85(2), 296–302 (2015)

    Article  Google Scholar 

  11. Liu, M., Zhang, J., Yap, P.T., Shen, D.: View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data. Med. Image Anal. 36, 123–134 (2017)

    Article  Google Scholar 

  12. Liu, M., Zhang, D., Shen, D.: Relationship induced multi-template learning for diagnosis of Alzheimer’s disease and mild cognitive impairment. IEEE Trans. Med. Imaging 35(6), 1463–1474 (2016)

    Article  Google Scholar 

  13. Lian, C., Zhang, J., Liu, M., Zong, X., Hung, S.C., Lin, W., Shen, D.: Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images. Med. Image Anal. 46, 106–117 (2018)

    Article  Google Scholar 

  14. Liu, M., Zhang, J., Adeli, E., Shen, D.: Joint classification and regression via deep multi-task multi-channel learning for Alzheimer’s disease diagnosis. IEEE Trans. Biomed. Eng. (2018)

    Google Scholar 

  15. Liu, M., Zhang, D., Adeli, E., Shen, D.: Inherent structure-based multiview learning with multitemplate feature representation for Alzheimer’s disease diagnosis. IEEE Trans. Biomed. Eng. 63(7), 1473–1482 (2016)

    Article  Google Scholar 

  16. Liu, M., Zhang, J., Nie, D., Yap, P.T., Shen, D.: Anatomical landmark based deep feature representation for MR images in brain disease diagnosis. IEEE J. Biomed. Health Inform. 22(5), 1476–1485 (2018)

    Article  Google Scholar 

  17. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, Berlin (2001)

    MATH  Google Scholar 

  18. Small, G.W., Ercoli, L.M., Silverman, D.H., Huang, S.C., Komo, S., Bookheimer, S.Y., Lavretsky, H., Miller, K., Siddarth, P., Rasgon, N.L., et al.: Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’s disease. Proc. Natl. Acad. Sci. 97(11), 6037–6042 (2000)

    Article  Google Scholar 

  19. Lian, C., Ruan, S., Denœux, T., Jardin, F., Vera, P.: Selecting radiomic features from FDG-PET images for cancer treatment outcome prediction. Med. Image Anal. 32, 257–268 (2016)

    Article  Google Scholar 

  20. Wolz, R., Aljabar, P., Hajnal, J.V., Lötjönen, J., Rueckert, D.: Nonlinear dimensionality reduction combining MR imaging with non-imaging information. Med. Image Anal. 16(4), 819–830 (2012)

    Article  Google Scholar 

  21. Tong, T., Wolz, R., Gao, Q., Guerrero, R., Hajnal, J.V., Rueckert, D.: Multiple instance learning for classification of dementia in brain MRI. Med. Image Anal. 18(5), 808–818 (2014)

    Article  Google Scholar 

  22. Coupé, P., Eskildsen, S.F., Manjón, J.V., Fonov, V.S., Pruessner, J.C., Allard, M., Collins, D.L.: Scoring by nonlocal image patch estimator for early detection of Alzheimer’s disease. NeuroImage: Clin. 1(1) (2012) 141–152

    Google Scholar 

  23. Lian, C., Ruan, S., Denœux, T., Li, H., Vera, P.: Spatial evidential clustering with adaptive distance metric for tumor segmentation in FDG-PET images. IEEE Trans. Biomed. Eng. 65(1), 21–30 (2017)

    Article  Google Scholar 

  24. Lian, C., Ruan, S., Denœux, T., Li, H., Vera, P.: Joint tumor segmentation in PET-CT images using co-clustering and fusion based on belief functions. IEEE Trans. Image Process. 28(2), 755–766 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, M., Zhang, J., Adeli, E., Shen, D.: Landmark-based deep multi-instance learning for brain disease diagnosis. Med. Image Anal. 43, 157–168 (2018)

    Article  Google Scholar 

  26. Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P.J., L Whitwell, J., Ward, C.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Google Scholar 

  27. Malone, I.B., Cash, D., Ridgway, G.R., MacManus, D.G., Ourselin, S., Fox, N.C., Schott, J.M.: MIRIAD-Public release of a multiple time point Alzheimer’s MR imaging dataset. NeuroImage 70, 33–36 (2013)

    Article  Google Scholar 

  28. Cheng, B., Liu, M., Suk, H.I., Shen, D., Zhang, D.: Multimodal manifold-regularized transfer learning for MCI conversion prediction. Brain Imaging Behav. 1–14 (2015)

    Google Scholar 

  29. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)

    Article  Google Scholar 

  30. Mardia, K.: Assessment of multinormality and the robustness of Hotelling’s T\(^2\) test. Appl. Stat. 163–171 (1975)

    Google Scholar 

  31. Holmes, C.J., Hoge, R., Collins, L., Woods, R., Toga, A.W., Evans, A.C.: Enhancement of MR images using registration for signal averaging. J. Comput. Assist. Tomogr. 22(2), 324–333 (1998)

    Article  Google Scholar 

  32. Ashburner, J., Friston, K.J.: Why voxel-based morphometry should be used. NeuroImage 14(6), 1238–1243 (2001)

    Article  Google Scholar 

  33. Zhang, J., Liang, J., Zhao, H.: Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans. Image Process. 22(1), 31–42 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

  35. De Jong, L., Van der Hiele, K., Veer, I., Houwing, J., Westendorp, R., Bollen, E., De Bruin, P., Middelkoop, H., Van Buchem, M., Van Der Grond, J.: Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain 131(12), 3277–3285 (2008)

    Article  Google Scholar 

  36. Liu, M., Zhang, D., Shen, D.: Ensemble sparse classification of Alzheimer’s disease. NeuroImage 60(2), 1106–1116 (2012)

    Article  Google Scholar 

  37. Yan, Z., Zhan, Y., Peng, Z., Liao, S., Shinagawa, Y., Zhang, S., Metaxas, D.N., Zhou, X.S.: Multi-instance deep learning: discover discriminative local anatomies for bodypart recognition. IEEE Trans. Med. Imaging 35(5), 1332–1343 (2016)

    Article  Google Scholar 

  38. Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif. Intell. 201, 81–105 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  40. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: A system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, vol. 16, pp. 265–283 (2016)

    Google Scholar 

  41. Zhang, D., Shen, D.: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 59(2), 895–907 (2012)

    Article  MathSciNet  Google Scholar 

  42. Cheng, B., Liu, M., Zhang, D., Munsell, B.C., Shen, D.: Domain transfer learning for MCI conversion prediction. IEEE Trans. Biomed. Eng. 62(7), 1805–1817 (2015)

    Article  Google Scholar 

  43. Liu, M., Zhang, D., Chen, S., Xue, H.: Joint binary classifier learning for ECOC-based multi-class classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(11), 2335–2341 (2016)

    Article  Google Scholar 

  44. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  45. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1), 273–289 (2002)

    Article  Google Scholar 

  46. Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Trans. Med. Imaging 21(11), 1421–1439 (2002)

    Article  Google Scholar 

  47. Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure 405(2) (1975) 442–451

    Google Scholar 

  48. Wang, M., Zhang, D., Shen, D., Liu, M.: Multi-task exclusive relationship learning for Alzheimer’s disease progression prediction with longitudinal data. Med. Image Anal. 53, 111–122 (2019)

    Article  Google Scholar 

  49. Jie, B., Liu, M., Liu, J., Zhang, D., Shen, D.: Temporally constrained group sparse learning for longitudinal data analysis in Alzheimer’s disease. IEEE Trans. Biomed. Eng. 64(1), 238–249 (2017)

    Article  Google Scholar 

  50. Lian, C., Liu, M., Zhang, J., Shen, D.: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI. IEEE Trans. Pattern Anal. Mach. Intell. (2019)

    Google Scholar 

  51. Wang, M., Zhang, D., Huang, J., Shen, D., Liu, M.: Low-rank representation for multi-center autism spectrum disorder identification. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 647–654. Springer (2018)

    Google Scholar 

Download references

Acknowledgements

This study was partly supported by NIH grants (EB006733, EB008374, EB009634, MH100217, AG041721, AG042599, AG010129, and AG030514). Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report, with details shown online.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxia Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, M., Lian, C., Shen, D. (2020). Anatomical-Landmark-Based Deep Learning for Alzheimer’s Disease Diagnosis with Structural Magnetic Resonance Imaging. In: Chen, YW., Jain, L. (eds) Deep Learning in Healthcare. Intelligent Systems Reference Library, vol 171. Springer, Cham. https://doi.org/10.1007/978-3-030-32606-7_8

Download citation

Publish with us

Policies and ethics