Skip to main content

Direct Torque Control of Three Phase Asynchronous Motor with Sensorless Speed Estimator

  • Conference paper
  • First Online:
Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019 (AISI 2019)

Abstract

Direct torque control is undoubtedly a very promising solution to the problems of robustness and dynamics encountered in the directional flow vector control of the rotor of induction machines. Current research aims to improve the performance of this technique like the evolution of the switching frequency, the ripple on the torque, the flow and the current, and assists the cost of the sensor position. Therefore, this article presents a solution for the direct torque control without speed sensor. The simulations results showed a good dynamic performance of this control technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelmalek, S., Rezazi, S., Azar, A.T.: Sensor faults detection and estimation for a DFIG equipped wind turbine. Energy Procedia 139, 3–9 (2017). Materials & Energy I (2015)

    Google Scholar 

  2. Abdelmalek, S., Azar, A.T., Dib, D.: A novel actuator fault-tolerant control strategy of dfig-based wind turbines using Takagi-Sugeno multiple models. Int. J. Control Autom. Syst. 16(3), 1415–1424 (2018)

    Article  Google Scholar 

  3. Ammar, A., Bourek, A., Benakcha, A.: Nonlinear SVM-DTC for induction motor drive using input-output feedback linearization and high order sliding mode control. ISA Trans. 67, 428–442 (2017)

    Article  Google Scholar 

  4. Arnanz, R., Miguel, L.J., Perán, J.R., Mendoza, A.: A modified direct torque control with fault tolerance. Control Eng. Pract. 19(9), 1056–1065 (2011). Special Section: DCDS 2009 – The 2nd IFAC Workshop on Dependable Control of Discrete Systems

    Google Scholar 

  5. Ayrir, W., Ourahou, M., Hassouni, B.E., Haddi, A.: Direct torque control improvement of a variable speed DFIG based on a fuzzy inference system. Math. Comput. Simul. (2018)

    Google Scholar 

  6. Carmeli, M., Mauri, M.: Direct torque control as variable structure control: existence conditions verification and analysis. Electr. Power Syst. Res. 81(6), 1188–1196 (2011)

    Article  Google Scholar 

  7. Casadei, D., Profumo, F., Serra, G., Tani, A.: FOC and DTC: two viable schemes for induction motors torque control. IEEE Trans. Power Electron. 17(5), 779–787 (2002). https://doi.org/10.1109/TPEL.2002.802183

    Article  Google Scholar 

  8. Depenbrock, M.: Direct self-control (DSC) of inverter-fed induction machine. IEEE Trans. Power Electron. 3(4), 420–429 (1988). https://doi.org/10.1109/63.17963

    Article  Google Scholar 

  9. Ghoudelbourk, S., Dib, D., Omeiri, A., Azar, A.T.: MPPT control in wind energy conversion systems and the application of fractional control (PI\(^\alpha \)) in pitch wind turbine. Int. J. Model. Ident. Control 26(2), 140–151 (2016)

    Google Scholar 

  10. Sudheer, H., Kodad, S.F., Sarvesh, B.: Improvements in direct torque control of induction motor for wide range of speed operation using fuzzy logic. J. Electr. Syst. Inf. Technol. 5(3), 813–828 (2018)

    Google Scholar 

  11. Hassan, A., Shehata, E.: High performance direct torque control schemes for an ipmsm drive. Electr. Power Syst. Res. 89, 171–182 (2012)

    Article  Google Scholar 

  12. Heinbokel, B.E., Lorenz. R.D.: Robustness evaluation of deadbeat, direct torque and flux control for induction machine drives. In: 2009 13th European Conference on Power Electronics and Applications, pp. 1–10 (2009)

    Google Scholar 

  13. Karpe, S., Deokar, S.A., Dixit, A.M.: Switching losses minimization by using direct torque control of induction motor. J. Electr. Syst. Inf. Technol. 4(1), 225–242 (2017)

    Google Scholar 

  14. Liu, H., Zhang, H.: A novel direct torque control method for brushless DC motors based on duty ratio control. J. Franklin Inst. 354(10), 4055–4072 (2017)

    Article  MathSciNet  Google Scholar 

  15. Lokriti, A., Salhi, I., Doubabi, S.: IM direct torque control with no flux distortion and no static torque error. ISA Trans. 59, 256–267 (2015)

    Article  Google Scholar 

  16. Marino, P., D’Incecco, M., Visciano, N.: A comparison of direct torque control methodologies for induction motor. In: 2001 IEEE Porto Power Tech Proceedings (Cat. No. 01EX502), vol. 2, p. 6 (2001). https://doi.org/10.1109/PTC.2001.964724

  17. Meghni, B., Dib, D., Azar, A.T.: A second-order sliding mode and fuzzy logic control to optimal energy management in wind turbine with battery storage. Neural Comput. Appl. 28(6), 1417–1434 (2017)

    Article  Google Scholar 

  18. Meghni, B., Dib, D., Azar, A.T., Saadoun, A.: Effective supervisory controller to extend optimal energy management in hybrid wind turbine under energy and reliability constraints. Int. J. Dyn. Control 6(1), 369–383 (2018)

    Article  MathSciNet  Google Scholar 

  19. Naik, V.N., Panda, A., Singh, S.P.: A three-level fuzzy-2 DTC of induction motor drive using SVPWM. IEEE Trans. Industr. Electron. 63(3), 1467–1479 (2016). https://doi.org/10.1109/TIE.2015.2504551

    Article  Google Scholar 

  20. Pimkumwong, N., Wang, M.S.: Full-order observer for direct torque control of induction motor based on constant V/F control technique. ISA Trans. 73, 189–200 (2018)

    Article  Google Scholar 

  21. Razik, H.: Handbook of Asynchronous Machines with Variable Speed. Wiley-ISTE (2013)

    Google Scholar 

  22. Smida, M.B., Sakly, A., Vaidyanathan, S., Azar, A.T.: Control-based maximum power point tracking for a grid-connected hybrid renewable energy system optimized by particle swarm optimization. In: Azar, A.T., Vaidyanathan, S. (eds.) Advances in System Dynamics and Control, pp. 58–89. IGI Global (2018)

    Google Scholar 

  23. Sutikno, T., Idris, N.R.N., Jidin, A.: A review of direct torque control of induction motors for sustainable reliability and energy efficient drives. Renew. Sustain. Energy Rev. 32, 548–558 (2014)

    Article  Google Scholar 

  24. Swierczynski, D., Wojcik, P., Kazmierkowski, M.P., Janaszek, M.: Direct torque controlled PWM inverter fed PMSM drive for public transport. In: 2008 10th IEEE International Workshop on Advanced Motion Control, pp 716–720 (2008). https://doi.org/10.1109/AMC.2008.4516155

  25. Takahashi, I., Noguchi, T.: A new quick-response and high-efficiency control strategy of an induction motor. IEEE Trans. Ind. Appl. IA 22(5), 820–827 (1986). https://doi.org/10.1109/TIA.1986.4504799

    Article  Google Scholar 

  26. Tazerart, F., Mokrani, Z., Rekioua, D., Rekioua, T.: Direct torque control implementation with losses minimization of induction motor for electric vehicle applications with high operating life of the battery. Int. J. Hydrogen Energy 40(39), 13827–13838 (2015)

    Article  Google Scholar 

  27. Wang, Y., Niimura, N., Lorenz, R.D.: Real-time parameter identification and integration on deadbeat-direct torque and flux control (DB-DTFC) without inducing additional torque ripple. In: 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 2184–2191 (2015). https://doi.org/10.1109/ECCE.2015.7309968

  28. Wildi, T.: Electrical Machines, Drives and Power Systems, 6th edn. Pearson (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fekik, A. et al. (2020). Direct Torque Control of Three Phase Asynchronous Motor with Sensorless Speed Estimator. In: Hassanien, A., Shaalan, K., Tolba, M. (eds) Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2019. AISI 2019. Advances in Intelligent Systems and Computing, vol 1058. Springer, Cham. https://doi.org/10.1007/978-3-030-31129-2_23

Download citation

Publish with us

Policies and ethics